
Fidelio is a Python program designed to demonstrate encryption schemes.

Fidelio is licensed under the GNU General Public License.  All code is the work of Sam 
Kennerly EXCEPT the function modexp (used for modular exponentiation) licensed 
under the GNU GPL by Wojtek Jamrozy (www.wojtekrj.net) . 

DISCLAIMER: This program should NOT be used for professional security 
applications.  ALL of the encryption schemes implemented by Fidelio should be 
considered insecure against a knowledgeable attacker.

To run Fidelio, you must have Python installed.  Itʼs available at www.python.org .
(Python is free software and Mac and Linux computers may already have it installed.)

No installation is needed; just unzip the file Fidelio.zip and place the unzipped folder 
somewhere on your hard disk.  (All files needed to run Fidelio are in this folder.)

Open a terminal, change to whatever directory contains Fidelio, and type:


	 python Fidelio.py

Select from the menu options by typing the appropriate (lower- or upper-case) letter.  

Fidelio comes with three default alphabets which assign numerical values to text 
characters.  Users can select from alphabets at runtime and/or input their own custom 
alphabets (up to 99 characters) in the Global Variables of the source code.  The Show 
Alphabets command displays the alphabets in the current version of the program.

Fidelioʼs encryption schemes are called Substitution, Caesar, Dodgson, and RSA :

Numerical substitution

Each character is represented as a 2-digit decimal integer 00-99.  (Which number 
corresponds to each character depends on the selected alphabet.)  These integers are 
then packaged into “packets” of 8-digit long integers and printed to screen.  The last 
packet is padded by adding random digits until it is 7 digits long, then one last digit 
records the number of padding-digits to delete later (including itself).  This packaging 
may seem unnecessarily elaborate, but it will be useful later for RSA encryption.

Any characters not in the chosen alphabet are recorded as the number N, where N is 
the length of the alphabet.  For example, using the 26-character alphabet A=0, B=1, 
C=2, ... Z=25, any other character = 26.
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HELLO WORLD  ->  07041111 14262214 17110392

Here H = 07 , E = 04 , L = 11 , and so on.  The blank space is not part of the 26-char 
alphabet, so it is recorded as 26.  Note that after D = 03 , the last digits are 92.  The 9 is 
random and the 2 indicates that the last 2 digits are padding and should be ignored.

This scheme is not at all secure; its purpose is to use Pythonʼs string-slicing and type-
conversion features to store text as a number so it can later be encrypted by a more 
“serious” numerical scheme.  Also note that unless the alphabet has exactly 99 
characters, the resulting output requires much more memory than the original message.  
Disregarding some obscure system characters, there are 96 ASCII characters, so ASCII 
encoding is reasonably efficient - though a “serious” encryption program would of 
course store text and ciphers as carefully-packaged binary data for maximum efficiency.

The functions  makenumbers and  makepackets are used to form the list of numbers 
and build a list of 8-digit long integers.  The functions unpack and makeletters are used 
to break the 8-digit longs into a list of 2-digit ints and then recover the original text.

Caesar encryption

The classic Caesar encryption scheme creates a cipher by replacing each character in 
an alphabet by the character 3 places to the right.  For a 26-letter alphabet, the result is:

A -> D , B -> E , C -> F , ... , X -> A , Y -> B , Z -> C

Note that the replacement “wraps around” for letters at the end of the alphabet.  
Representing (A,B,...,Z) as (0,1,...,25), Caesar encryption is equivalent to modular 
addition with 26 as the modulus.  The function caesarshift converts a string into a 
list of numbers, then adds the value shift modulo the alphabet size.  For the 26-letter 
alphabet, a shift value of 3 creates the classical Caesar cipher.

Caesar decryption is accomplished by subtracting the shift value using modular 
arithmetic, so there is no need for a decryption function.  Note that a shift of 13 (known 
as ROT13) is encrypted and decrypted by exactly the same process.  A shift of 0 (or 26 
or any multiple of 26) leaves the original plaintext unchanged.

Dodgson encryption

This polyalphabetic cipher is more commonly called Vignère encryption, though it 
was actually invented by Giovan Bellaso in 1553.  (Charles Dodgson published a 
version called “The Alphabet Cipher” in a childrenʼs magazine; if the 26-character 
alphabet is selected, Fidelio uses an identical scheme.)



This scheme uses a password as a shared key - the same password is used to encrypt 
and decrypt the message.  For an N-character message, the password is repeatedly 
concatenated to itself to form a string keystring which is then converted into a list of 
numbers called keylist.  For example, the16-char message MEETMEATMIDNIGHT 
with password FIDELIO results in the following keystring and keylist:

FIDELIOFIDELIOFI         5 8 3 4 11 8 14 5 8 3 4 11 8 14 5 8

The function dodgsonencrypt represents an input text as a list of numbers, then shifts 
the k-th element of the list forward by the k-th element of keylist and adds 1:

where C is the resulting cipher, M is the message (as a number), K is the keylist and A 
is the alphabet size.  (The 1 makes this scheme match the one Dodgson described.)

The function dodgsondecrypt recovers the original message from the cipher by 
subtracting the k-th key element (then subtracting 1) from the k-th cipher element.

Polyalphabetic ciphers make frequency analysis substantially more difficult, but they are 
not necessarily secure against sophisticated attacks.  Variants (including the infamous 
Enigma machine) have been erroneously thought to be uncrackable for centuries. 

A one-time pad is a polyalphabetic cipher in which the key is the same length as the 
message, the key characters are chosen completely at random, and the key is used 
exactly once.  Claude Shannon proved in the 1940s that a one-time pad cannot be 
cracked by any opponent, even one with arbitrarily fast computing power. 

RSA encryption

The keys in the Dodgson cipher and one-time pad are examples of private keys which 
share a common inconvenience: the key itself must itself be somehow secretly shared 
between Alice and Bob before any message is sent.  Public-key encryption schemes 
such as RSA were developed to avoid this nuisance.

As an analogy, imagine that Alice wants to send a message that must not be read by 
anyone but Bob.  Bob buys a padlock and keeps the only key for himself, then sends 
the (unlocked) padlock by mail to Alice. Alice put her message in an armored box, locks 
it with the padlock, then mails the box to Bob. Even if an eavesdropper (conventionally 
called Eve) intercepts the message, Eve cannot read it. In this case, the padlock is 
Bobʼs public key and the key that opens the padlock is his private key. 

If Eve wants to spoof messages by pretending she is Alice, she must intercept Bobʼs 
padlock, use it to lock away a fake message, and mail that to Bob. To prevent this, Alice 

Ck = Mk + Kk + 1 (mod A)



stamps all her messages with an elaborate wax seal that can be easily recognized by 
Bob but is extremely difficult to create without Aliceʼs special stamping-tool. Here the 
wax seal is Aliceʼs public signature and the stamping-tool is her private (signature) key. 
So long as both private keys are always kept private, Eve cannot interfere. 

Digital public-key encryption schemes send, instead of padlocks and wax seals, difficult 
math problems that are much easier to solve (for sending) or create (for signing) by 
someone who knows a certain hint. That hint then becomes a private key and the math 
problems are used as “padlocks.” In the case of RSA encryption, the problems are:

 1. The discrete logarithm problem:

where M is the original message, E is the public key (or “public exponent”), C is the 
encrypted ciphertext, and N is an RSA number sent along with the public key.

C ,E, and N are all large integers. (Fidelio uses 5- and 6-digit decimal integers for E and 
9-digit decimal integers for N, while a military scheme might use 1024-digit binary 
integers.)  The “log” here means “take the logarithm base E with respect to modular 
multiplication (mod N ),” or equivalently, “find M such that (M)E (mod N ) = C .” 

2. Semi-prime factorization:

Given that N is the product of two prime numbers p and q, find p and q. (Such numbers 
are called semi-prime.) RSA private keys are generated using p and q, so if Eve can 
factor Aliceʼs RSA number N , she can create her own copy of Aliceʼs private key. 

The security of RSA encryption depends on these problems being impractically slow to 
solve on present-day computers, while their inverse problems (modular exponentiation, 
multiplying two large integers) can be done quickly and reliably.

RSA encryption requires three numbers for each party involved in communication:


 - an RSA number (denoted here as N) which is the product of two primes.

 - a public key or public exponent which is coprime to the totient of N.

 - a private key which is the multiplicative inverse of the public key ( mod totient ).

To send a secret message to Bob, Alice needs to know his RSA number and public key.  
The message can then only be read using Bobʼs RSA number and private key.  Fidelio 
includes an option for automatically generating all three numbers, though users should 
note that the numbers used by Fidelio are NOT large enough to ensure security.

The RSA key-generation algorithm is described below:

M = logE [C] ( mod N )



0.  Choose two primes p and q.  Multiply them together to find N.  Fidelio 
chooses p and q randomly from the second half of a list of 10,000 prime 
numbers in a separate file.  This ensures large-but-manageable numbers.

1.  Find Eulerʼs totient of N, which is the number of elements in (mod N) 
arithmetic which have a multiplicative inverse.  (These elements are called 
units.)  For a semi-prime number like N, the totient equals (p-1) * (q-1) .

2.  Chose a public key E that is large but less than the totient.  E must be 
coprime to the totient (that is, they share no factors).  Fidelio selects E by 
choosing another random prime from the same range as p and q, then checking 
that it is less than the totient and choosing again if needed.

3.  The private key is the multiplicative inverse (mod totient) of the public key E.  
This can be found quickly using the extended Euclidean algorithm, which Fidelio 
does.  Note that anyone can find a private key this way if they know the totient 
(p-1) * (q-1) of their victimʼs RSA number; this is why it is important that RSA 
numbers are too large to be easily factored.  (Fidelio only chooses from 5000 
primes, so it is not hard to factor Fidelioʼs generated RSA numbers by force.)

Once keys have been generated, Alice sends a message M to Bob by first encrypting it:

The result C is called the ciphertext, though it is actually a number.  The message itself 
must be a number less than N.  For messages larger than the RSA number N, the 
message is broken into smaller packets, each of which is then encrypted.  (Fidelio uses 
8-digit decimal long integers as packets and 9-digit decimal RSA numbers.)

To decrypt the message, Bob uses his private key to find:

which, according to a result from number theory called the Chinese remainder theorem, 
will be true only if the private key δ and the public key E are multiplicative inverses 
( mod totient ).  This exponentation is much easier than the discrete logarithm problem.

Professional RSA encryption schemes also involve digital signatures in which a 
separate public key, private key, and RSA number are used along with a hash function 
to “sign” messages to prove that the sender is who he/she claims.  Fidelio does not sign 
messages and is thus vulnerable to spoofing.  In addition, more sophisticated schemes 
for packaging and padding a message are needed to guarantee true security.  Lastly, 
remember that the prime numbers used by Fidelio are small enough to allow an 
unauthorized attacker to find the private key corresponding to an RSA number and 
public key!  For these reasons, Fidelio should be used for educational purposes only.

C = ME ( mod N )

Cδ = (ME)δ = MEδ = M1 (mod N )


