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0.0  DNA and Beethovenʼs 9th Symphony
♦ In my last presentation, I said the information content of the human genome is 

about equal to a recording of Beethovenʼs 9th.

♦ 3 billion base pairs in human DNA, each occupied by 1 of 4 bases.  
Representing each base by two binary digits, we need (2 bits)*(3 billion)
= 6 gigabits = 750 MB of disk space to sequence a genome.

♦ An audio CD records two 16-bit samples every 44,100th of a second.  The 9th 
is about 72 minutes long, so it needs (2)(16)(44,100)(72)(60) bits = 6 Gb.

♦ Question: Do we really need all those bits?  Canʼt we .zip them or something?
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0.1  DNA and Beethovenʼs 9th Symphony
♦ DNA answer: The entropy rate of DNA is about 1.7 bits per base, about 85% of 

the maximum 2 bits/base.  Shannonʼs source coding theorem says that no 
algorithm can compress the genome to less than (0.85)(750MB) = 637.5 MB.

♦ Real-life compression is imperfect; source-coding theorem gives a lower 
bound on file size.  Compression schemes designed for one type of data may 
work poorly for others.  (ZIP is notoriously bad for audio encoding.)

♦ Beethoven answer: The entropy rate depends on the recording, but existing 
Golumb-Rice encoders compress to about 50-60% original size.

♦ Lossy compression can make files smaller, but information is destroyed!  
Examples: mp3/aac/ogg (audio), jpg/gif (graphics), DivX/qt/wmv (video)

♦ Experiments suggest VBR-mp3 at 18% is good enough to trick listeners.

♦ How much of DNA info is “junk” is debated; 95% is a popular estimate.
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1.0  What is entropy?
♦ Old-fashioned answer: Entropy is a measure of how disordered a system is.

♦ Dilemma: How do we define disorder?  A broken egg is more disordered than a 
not-broken egg... but which of the following pictures is least disordered?

♦ Moral of story: Disorder is in the eye of the beholder.

Letter “S” Smiley Face Sicilian Dragon

           system 1                                         system 2                                         system 3
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2.0  Boltzmannʼs entropy
♦ Question: How do we model the behavior of gases in a steam engine?

♦ 1 L of ideal gas at STP has 2.7 1022 molecules.  If each has 3 position and 3 
momentum coordinates, differential eqn. of motion has ~ 1023 variables.  
(Actual gases are much more complicated, of course.)

♦ Solving this equation is an impractical way to build locomotives.

♦ Answer: Call each configuration the system a microstate.  If two different 
microstates have the same Energy, Volume, and Number of particles, call them 
equivalent.  A macrostate a set of microstates with the same (E,V,N) values.

♦ Multiplicity Ω(E,V,N) is the number of microstates for a given macrostate.

♦ Ω is measure of how much information we are ignoring in our model of the 
system.  For this reason, I like to call it the ignorance of a macrostate.

5



2.1  Boltzmannʼs entropy
♦ This method of counting microstates per macrostate is called microcanonical 

ensemble theory.  Boltzmann defined the entropy of a macrostate like so:

♦ This entropy is the logarithm of ignorance times a constant k ≈ 1.38 1023 J/K .

♦ To help us remember this formula, Boltzmann had it carved into his tombstone.

S(E, V, N) = k ln(Ω)

This is Ludwig Boltzmannʼs tomb in Vienna.

(Apparently he was one of those people 
who prefer “log” to “ln.”  Also he used W for 
multiplicity, but you get the idea.)

Boltzmannʼs kinetic theory of gases caused 
some controversy because it apparently 
requires systems to be inherently discrete.

Quantum-mechanical systems with discrete 
energy levels fit nicely into this theory!
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3.0  Shannonʼs entropy
♦ In 1937, Claude Shannon wrote a famous Masterʼs thesis about using Boolean 

algebra to write computer programs.  During WWII he worked with Alan Turing 
on cryptography and electronic control theory for Bell Labs.

♦ Shannon later published his source-coding and noisy-channel theorems.  
These placed limits on file compression and the data capacity of a medium 
subject to noise and errors.  Both theorems use this definition of entropy:

♦ Gibbsʼ entropy from thermodynamics is Shannonʼs entropy times k,* though  
Shannonʼs entropy is defined for probability distributions, not physical states.
S is a measure of how much information is revealed by a random event.

S[pn] = −
∑

n

pn log(pn) S[p(x)] = −
∫

p log(p) dx

for discrete probability distributions for continuous probability distributions

* Prof. Goldberg and I opine that temperatures should be written in Joules, in which case k = 1.

7



3.1 Shannonʼs entropy
♦ For a random variable X, a continuous probability distribution p(x) is defined:

♦ A probability distribution p(x) is also called a probability density function or 
PDF.  (Technically p(x) doesnʼt have to be a function as long as it can be 
integrated.  For example, Diracʼs δ(x) is a valid PDF but not a function.)

♦ From the definition it follows that                  and                                .

♦ Example: Cryptographers perform frequency analysis on ciphertexts by 
writing a discrete PDF for how often each letter appears.  For a plaintext, this 
PDF has non-maximal entropy; the letter “E” is more probable than “Q.”

♦ Example: Password entropy is maximized by using uniformly-chosen random 
letters instead of English words. Including numbers and symbols increases S.

P [a ≤ X ≤ b] =
∫ b

a
p(x) dx

p(x) ≥ 0
∫ +∞

−∞
p(x) dx = 1
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3.2 Shannonʼs entropy
♦ To better understand Shannonʼs entropy, first define a surprisal In = log(pn-1) 

for each possible random outcome pn .

♦ Example: Alice rolls two dice at the same time.  Bob bets her $1 that she will 
not roll “boxcars” (two 6ʼs).  If Alice wins, Bobʼs surprisal will be log(36).

♦ Example: The table below shows how surprised we should be when dealt 
certain types of Texas Hold ʻEm hands preflop.

♦ Shannonʼs entropy for a PDF is the expectation value of surprisal.

hand

surprisal

AA AA/KK 99 or better any pair any suited the hammer

log(221) log(111) log(37) log(17) log(4.25) log(111)

〈
log

( 1
pn

)〉
= −

〈
log(pn)

〉
= −

∑

n

pn log(pn)

IMPORTANT TECHNICALITY:  0 log(0) = 0.  Use lʼHôpitalʼs rule and                                                      .                                                                                                                                                          lim
x→0

[x log(x)] = lim
y→∞

[log(y)/y]
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3.3  Shannonʼs entropy
♦ Question: What base to use for log?  

♦ Answer: Any number!  Information entropy comes in dimensionless units.

♦ Question: Why use a logarithm in the definition of entropy?

♦ Answer: Observing N outcomes of a random process should give us N times as 
much information as one outcome.  Information is an extensive quantity.

♦ Example: Rolling a die once has 6 possible outcomes and rolling it twice has 62 
outcomes.  The entropy of two die rolls is log(6) + log(6) = log(62) ≈ 5.17 .

base

unit name

2 e 10

bit nat hartley
(or ban)

Shannon is credited with inventing the term 
“bit” for the entropy of a single fair coin toss.

Ralph Hartley was a Bell Labs information-
theorist working with Turing and Shannon.
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3.4  Shannonʼs entropy
♦ The entropy of a fair coin toss is (.5)(log 2) + (.5)(log 2).  In base 2, thatʼs 1 bit.

♦ The entropy of an unfair coin toss is given by the binary entropy function.
 

♦ 2-player Hold ʻEm preflop all-in hands are examples of unfair coin tosses:

p(win)

en
tro

py
 (b

its
)

hand p(win) surprisal entropy
AA vs AKs
AKo vs 89s
89s vs 44
44 vs AKo
KK vs 88

87% 2.9 0.557 bit
59% 1.3 0.976 bit
52% 1.1 0.999 bit
54% 1.1 0.996 bit
80% 2.3 0.722 bit

Here best hand is written first, p(win) is prob. best hand wins, and surprisal is log2 ( [1-p(win)]-1 ).

11



3.5  Shannonʼs entropy
♦ For an N-sided fair die, each outcome has surprisal N.  The entropy is

so Boltzmannʼs entropy is just Shannonʼs entropy for a uniform discrete PDF.

♦ If p(x) is zero outside a certain range, S is maximal for a uniform distribution.
(Of course!  A fair die (or coin) is inherently less predictable than an unfair one.)

♦ For a given standard deviation σ, S is maximal if p(x) is a normal distribution.
In this sense, bell curves are “maximally random” - but be very careful 
interpreting this claim!  Some PDFs (e.g. Lorentzians) have no well-defined σ.

♦ For multivariate PDFs, Bayesʼ theorem is used to define conditional entropy:

−
N∑

1

1
N

log
( 1

N

)
=

N∑

1

1
N

log(N) = log(N)

p(x|y) =
p(x)
p(y)

p(y|x) ⇒ S[X|Y ] = −
∑

x,y

p(x, y) log
(

p(x, y)
p(y)

)
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4.1  Thermodynamics
♦ Recall how temperature is defined in thermodynamics:  

♦ Define coldness* β = 1 / T .  Given a system with fixed particle number and 
volume, find the probability of each state as a function of internal energy U.

♦ Find Shannonʼs entropy for each PDF, then find β = (∂S/∂U).  The result is an 
information-theoretical definition of temperature in Joules per nat!

♦ In other words, coldness is a measure of how much entropy a system gains 
when its energy is increased.  Equivalently, T is a measure of how much 
energy is needed to increase the entropy of a system.

♦ It is energetically “cheap” to increase the entropy of a cold system.  If a hot 
system gives energy to a cold one, the total entropy of both systems increases.  
The observation that heat flows from hot things to cold leads to the 2nd Law...

1
T
≡

(
∂S

∂U

)

N,V

* Coldness is more intuitive when dealing with negative temperatures, which are hotter than ∞ Kelvins!
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4.2  Thermodynamics
♦ There have been many attempts to clearly state the 2nd Law of Thermo:

♦ Statistical: The entropy of a closed* system at thermal equilibrium is more likely 
to increase than decrease as time passes.

♦ Clausius: “Heat generally cannot flow spontaneously from a material at lower 
temperature to a material at higher temperature.”

♦ Kelvin: “It is impossible to convert heat completely into work in a cyclic process.”

♦ Murphy: “If thereʼs more than one way to do a job, and one of those ways will 
result in disaster, then somebody will do it that way.”

♦ My attempt: “Any system tends to acquire information from its environment.”

* Loschmidtʼs paradox points out that if a system is truly “closed,” i.e. it does not interact with its 
environment in any way, then the statistical version of the 2nd Law violates time-reversal symmetry!
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5.0  Von Neumannʼs entropy
♦ Despite his knowledge of probability, Von Neumann was reportedly a terrible 

poker player, so he invented game theory.

♦ Imagine playing 10,000 games of rock-paper-scissors for $1 per game.  Pure 
strategies can be exploited: if your opponent throws only scissors, you should 
throw only rocks, etc.  The best option is a mixed strategy in which you 
randomly choose rock, paper, or scissors with equal probability.

♦ Assume your opponent knows the probability of each of your actions.  The 
entropy of a pure strategy is 0.  The entropy of 1/3 rock + 1/3 paper + 1/3 
scissors is log(3) ≈ 1.58 bits, which is the maximum possible for this game.

♦ Von Neumannʼs poker models (and all modern ones) favor mixed strategies.  
But unlike rock-paper-scissors, the best strategy is not the one that maximizes 
entropy.  The best poker players balance their strategies by mixing profitable 
plays with occasional entropy-increasing bluffs and slowplays.
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5.1  Von Neumannʼs entropy
♦ Von Neumann (and possibly also Felix Bloch and Lev Landau) developed an 

alternate way to write quantum mechanics in terms of density operators.

♦ Density operators are useful for describing mixed states and systems in 
thermal equilibrium.  The related von Neumann entropy is also used to 
describe entanglement in quantum computing research.

♦ Density operators are defined as real combinations of projection operators.
A projection P is a linear operator such that P = P2 ( = P3 = P4 = ...)

♦ For any vector Ψ, there is a projection PΨ .  In Dirac notation,                      .
This notation says, “Give PΨ a vector.  It will take the inner product of that 
vector with Ψ to produce a number, and it will output Ψ times that number.”

P̂Ψ = |Ψ〉〈Ψ|

|a〉 =
[

1
0

]
⇒ P̂a =

[
1 0
0 0

]
|b〉 =

[
1√
2

1√
2

]
⇒ P̂b =

1
2

[
1 1
1 1

]
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5.2  Von Neumannʼs entropy
♦ A pure quantum state can be represented by some state vector Ψ in some 

complex vector space.  Its density operator is defined ρ = PΨ .

♦ Mixed quantum states represent uncertain preparation procedures.  For 
example, Alice prepares a spin-1/2 particle in the Sz eigenstate     .  Chuck then 
performs an Sx measurement but doesnʼt tell Bob the result.  Bob knows the 
state is now either                     or                    , but he doesnʼt know which!

♦ Bob can still write a density operator for this mixture of states.  He constructs a 
projection operator for each possible state, then multiplies each operator by 
50% and adds the two operators together:

♦ In general, a density operator is defined                                        where each P 
is the projection of a state and each p the probability the system is in that state.

| ↑〉

1√
2

(
| ↑〉 + | ↓〉

)
1√
2

(
| ↑〉 − | ↓〉

)

P̂1 = 1
2

[
1 1
1 1

]
P̂2 = 1

2

[
1 −1
−1 1

]
⇒ ρ̂ = 1

2

[
1 0
0 1

]

(p1)P̂1 + (p2)P̂2 + (p3)P̂3 · · ·
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5.3  Von Neumannʼs entropy
♦ If Bob measures the z-spin of his mixed-state particle, the expectation value of 

his measurement is the trace of the operator [Sz ][ρ].  (For a matrix, trace is the 
sum of diagonal elements.  In this case, that would be 0.)

♦ The diagonal elements of ρ are the probability of Bob finding Sz to be +½ or -½.  
If Bob wants to know the probability of finding the result of some other 
measurement, he rewrites ρ using the eigenstates of that operator as his basis.

♦ The time-evolution of ρ follows the Von Neumann equation, the density-
operator version of the Schrödinger equation:

♦ Von Neumannʼs entropy is defined by putting ρ into Shannonʼs entropy:

♦ Performing an observation changes ρ in such a way that S always increases!

ı! ∂tρ̂ = [Ĥ, ρ̂]

S = −
∑

n

pn log(pn) = −Tr[ρ̂ log(ρ̂)]
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5.4  Von Neumannʼs entropy
♦ Question: How do you find the log of an operator ?

♦ Answer: If the operator is Hermitian, it can be diagonalized by a unitary 
transformation H = U-1DU.  Since Exp[U-1DU] = U-1 Exp[D] U , we can “log” an 
operator by finding the log of its eigenvalues and then similarity transforming.

♦ A projection PΨ made from a vector Ψ is always Hermitian.  A real combination 
of Hermitian operators is also Hermitian, so ρ is Hermitian.  In fact, all its 
eigenvalues are in the interval [0,1] (Remember, zero eigenvalues can be 
ignored in the entropy formula because 0 log(0) = 0.)

♦ The definition of ρ can be used to prove that its trace Tr[ρ] = 1 always.

♦ The quantum version of canonical ensemble thermodynamics uses density 
operators.  The partition function Z  and density operator ρ are given by:

Z = Tr[EXP (−βĤ)] ρ̂ =
1
Z

EXP (−βĤ)
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6.0  Quantum information paradoxes
♦ According to the Schrödinger, Heisenberg, and Von Neumann equations, 

quantum time evolution is unitary.  Unitary transformations are always 
invertible, which means they can never destroy information about a state.

♦ The Copenhagen interpretation, however, says that measuring a system 
“collapses” it into an eigenstate.  This time evolution is a projection onto a 
vector, so it is singular.  Singular transformations always destroy information.  
Schrödinger thought this “damned quantum jumping” was absurd.

♦ Von Neumannʼs entropy is increased by projective measurements.  Does this 
help solve Schrödingerʼs objection?  If entropy is the amount of random 
information in a system, perhaps measurements only scramble information.

♦ Hawking, ʻt Hooft, Susskind, and Bekenstein claim that black holes maximize 
entropy for a given surface area, and if one of two entangled particles is sucked 
into the horizon, Hawking radiation is emitted as a mixed state.  This is not 
unitary time-evolution either!  Do black holes count as observers?
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Something Completely Different
♦ Humans seem to be naturally inept at understanding certain concepts from 

probability and statistics.  Some notorious examples are below:

♦ 1. Figher pilots at a particular airbase are each shot down with probability 1% 
on each mission.  What are the odds that a pilot completes 200 missions?

♦ 2. Betting on a number in roulette pays 35:1.  There are 38 numbers on an 
American roulette wheel.  What is the expectation value of 100 bets on red 7?

♦ 3. You are offered 3 doors to choose from on a game show.  Behind one is a 
car; the other two contain goats.  Your host, Monty, chose the winning door 
before the show by throwing a fair 3-sided die.  After you choose a door, Monty 
will open another door.  This door will always reveal a goat, and Monty will ask 
if you want to change your answer.  (If your first choice is the car, he will reveal 
either goat at random 50% of the time.)  Should you change your answer?
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The End

Answers:

1) 13.4%

2) -5.26 bets

3) Yes!
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