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0.0 DNA and Beethoven’s 9th Symphony

In my last presentation, | said the information content of the human genome is
about equal to a recording of Beethoven’s 9th.

3 billion base pairs in human DNA, each occupied by 1 of 4 bases.
Representing each base by two binary digits, we need (2 bits)*(3 billion)

= 6 gigabits = 750 MB of disk space to sequence a genome.

An audio CD records two 16-bit samples every 44,100th of a second. The 9th
is about 72 minutes long, so it needs (2)(16)(44,100)(72)(60) bits = 6 Gb.

Question: Do we really need all those bits? Can’t we .zip them or something?
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0.1 DNA and Beethoven’s 9th Symphony

¢ DNA answer: The entropy rate of DNA is about 1.7 bits per base, about 85% of

the maximum 2 bits/base. Shannon’s source coding theorem says that no
algorithm can compress the genome to less than (0.85)(750MB) = 637.5 MB.

Real-life compression is imperfect; source-coding theorem gives a lower
bound on file size. Compression schemes designed for one type of data may
work poorly for others. (ZIP is notoriously bad for audio encoding.)

Beethoven answer: The entropy rate depends on the recording, but existing
Golumb-Rice encoders compress to about 50-60% original size.

Lossy compression can make files smaller, but information is destroyed!
Examples: mp3/aac/ogg (audio), jpg/gif (graphics), DivX/gt/wmv (video)

Experiments suggest VBR-mp3 at 18% is good enough to trick listeners.

How much of DNA info is “junk” is debated; 95% is a popular estimate.

AN
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1.0 What is entropy?

¢ Old-fashioned answer: Entropy is a measure of how disordered a system is.

¢ Dilemma: How do we define disorder? A broken egg is more disordered than a
not-broken egg... but which of the following pictures is least disordered?

system 1 system 2 system 3
| /b hoide| |
) b & & &
L)
& & &
/e || b
Letter “S” Smiley Face Sicilian Dragon

¢ Moral of story: Disorder is in the eye of the beholder.

AN A




too much information

2.0 Boltzmann’s entropy

Question: How do we model the behavior of gases in a steam engine?

1 L of ideal gas at STP has 2.7 1022 molecules. If each has 3 position and 3
momentum coordinates, differential egn. of motion has ~ 1023 variables.
(Actual gases are much more complicated, of course.)

Solving this equation is an impractical way to build locomotives.

Answer: Call each configuration the system a microstate. If two different
microstates have the same Energy, Volume, and Number of particles, call them
equivalent. A macrostate a set of microstates with the same (E,V,N) values.

Multiplicity Q(E,V,N) is the number of microstates for a given macrostate.

() is measure of how much information we are ignoring in our model of the
system. For this reason, | like to call it the ignorance of a macrostate.
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2.1 Boltzmann’s entropy

¢ This method of counting microstates per macrostate is called microcanonical
ensemble theory. Boltzmann defined the entropy of a macrostate like so:

S(E,V,N) = kIn(Q)

¢ This entropy is the logarithm of ignorance times a constant k= 1.38 1028 J/K .

¢ To help us remember this formula, Boltzmann had it carved into his tombstone.

& This is Ludwig Boltzmann’s tomb in Vienna.

(Apparently he was one of those people
who prefer “log” to “In.” Also he used W for
multiplicity, but you get the idea.)

& Boltzmann’s kinetic theory of gases caused
some controversy because it apparently
requires systems to be inherently discrete.

& Quantum-mechanical systems with discrete
energy levels fit nicely into this theory!

o\ A\
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3.0 Shannon’s entropy

¢ In 1937, Claude Shannon wrote a famous Master’s thesis about using Boolean
algebra to write computer programs. During WWII he worked with Alan Turing
on cryptography and electronic control theory for Bell Labs.

¢ Shannon later published his source-coding and noisy-channel theorems.
These placed limits on file compression and the data capacity of a medium
subject to noise and errors. Both theorems use this definition of entropy:

Sl =~ Y palog(p)  Slo(a)l =~ [ plog(p) do

for discrete probability distributions for continuous probability distributions

& Gibbs’ entropy from thermodynamics is Shannon’s entropy times k,* though
Shannon’s entropy is defined for probability distributions, not physical states.
S is a measure of how much information is revealed by a random event.

* Prof. Goldberg and | opine that temperatures should be written in Joules, in which case k= 1.
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3.1 Shannon’s entropy
For a random variable X, a continuous probability distribution p(x) is defined:
b
P[agXSb]:/ p(x) dx

A probability distribution p(x) is also called a probability density function or
PDF. (Technically p(x) doesn’t have to be a function as long as it can be
integrated. For example, Dirac’s o(x) is a valid PDF but not a function.)

+00
From the definition it follows that p(x) > 0 and / plr)der=1.

Example: Cryptographers perform frequency analysis on ciphertexts by
writing a discrete PDF for how often each letter appears. For a plaintext, this
PDF has non-maximal entropy; the letter “E” is more probable than “Q.”

Example: Password entropy is maximized by using uniformly-chosen random
letters instead of English words. Including numbers and symbols increases S.
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3.2 Shannon’s entropy

for each possible random outcome pn .

not roll “boxcars” (two 6’s).

certain types of Texas Hold ‘Em hands preflop.

To better understand Shannon’s entropy, first define a surprisal I, = log(pn)

Example: Alice rolls two dice at the same time. Bob bets her $1 that she will
If Alice wins, Bob’s surprisal will be log(36).

Example: The table below shows how surprised we should be when dealt

hand AA

AA/KK

99 or better

any pair

any suited

the hammer

surprisal

log(221)

log(111)

log(37)

log(17)

log(4.25)

log(111)

Shannon’s entropy for a PDF is the expectation value of surprisal.

(i

)

~(log(pn) ) =

>

pr log(pn)

IMPORTANT TECHNICALITY: 0 log(0) =0. Use I'Hbpital’s rule and lim [x log(x

Q\A [ \a

xr—0

= hm log(y
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3.3 Shannon’s entropy

{> Question: What base to use for log?

¢ Answer: Any number! Information entropy comes in dimensionless units.

& Shannon is credited with inventing the term
base 2 e 10 “bit” for the entropy of a single fair coin toss.

bit nat hartley & Ralph Hartley was a Bell Labs information-

(or ban) theorist working with Turing and Shannon.

{ Question: Why use a logarithm in the definition of entropy?

& Answer: Observing N outcomes of a random process should give us N times as
much information as one outcome. Information is an extensive quantity.

¢ Example: Rolling a die once has 6 possible outcomes and rolling it twice has 62
outcomes. The entropy of two die rolls is log(6) + log(6) = Iog(62) ~5.17.
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3.4 Shannon’s entropy
& The entropy of a fair coin toss is (.5)(log 2) + (.5)(log 2). In base 2, that’s 1 bit.
& The entropy of an unfair coin toss is given by the binary entropy function.

¢ 2-player Hold ‘Em preflop all-in hands are examples of unfair coin tosses:

»

p(win) T
AAVSAKs |  87% 2.9 0.557 bit o
AKovs 89s |  59% 13 0.976 bit -
89svs 44 |  52% 1.1 0.999 bit g
44vsAKo |  54% 1.1 0.996 bit ?
KKvs88 | 80% 2.3 0.722 bit Y o e

p(win)

Here best hand is written first, p(win) is prob. best hand wins, and surprisal is logz ( [1-p(win)] ).

o\ A5 N
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3.5 Shannon’s entropy

For an N-sided fair die, each outcome has surprisal N. The entropy is
N

N
1 1 1
— 21: N log (N) = 21: N log(N) = log(V)
so Boltzmann’s entropy is just Shannon’s entropy for a uniform discrete PDF.

If p(x) is zero outside a certain range, S is maximal for a uniform distribution.
(Of course! A fair die (or coin) is inherently less predictable than an unfair one.)

For a given standard deviation o, S is maximal if p(x) is a normal distribution.
In this sense, bell curves are “maximally random” - but be very careful
interpreting this claim! Some PDFs (e.g. Lorentzians) have no well-defined o.

For multivariate PDFs, Bayes’ theorem is used to define conditional entropy:

o) v,y log (2222
plaly) = spWle) = SIXIY]= ZP ylg( <y>>
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4.1 Thermodynamics
1

0S5
{» Recall how temperature is defined in thermodynamics: = = | 5=

¢ Define coldness* 3 =1 /T . Given a system with fixed particle number and
volume, find the probability of each state as a function of internal energy U.

¢ Find Shannon’s entropy for each PDF, then find B = (dS/dU). The result is an
iInformation-theoretical definition of temperature in Joules per nat!

¢ In other words, coldness is a measure of how much entropy a system gains
when its energy is increased. Equivalently, Tis a measure of how much
energy is needed to increase the entropy of a system.

¢ Itis energetically “cheap” to increase the entropy of a cold system. If a hot
system gives energy to a cold one, the total entropy of both systems increases.
The observation that heat flows from hot things to cold leads to the 2nd Law...

* Coldness is more intuitive when dealing with negative temperatures, which are hotter than « Kelvins!
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4.2 Thermodynamics

There have been many attempts to clearly state the 2nd Law of Thermo:

Statistical: The entropy of a closed* system at thermal equilibrium is more likely
to increase than decrease as time passes.

Clausius: “Heat generally cannot flow spontaneously from a material at lower
temperature to a material at higher temperature.”

Kelvin: “It is impossible to convert heat completely into work in a cyclic process.”

Murphy: “If there’s more than one way to do a job, and one of those ways will
result in disaster, then somebody will do it that way.”

My attempt: “Any system tends to acquire information from its environment.”

* Loschmidt’s paradox points out that if a system is truly “closed,” i.e. it does not interact with its
environment in any way, then the statistical version of the 2nd Law violates time-reversal symmetry!

AN
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5.0 Von Neumann’s entropy

¢ Despite his knowledge of probability, Von Neumann was reportedly a terrible
poker player, so he invented game theory.

¢ Imagine playing 10,000 games of rock-paper-scissors for $1 per game. Pure
strategies can be exploited: if your opponent throws only scissors, you should
throw only rocks, etc. The best option is a mixed strategy in which you
randomly choose rock, paper, or scissors with equal probabillity.

¢ Assume your opponent knows the probability of each of your actions. The
entropy of a pure strategy is 0. The entropy of 1/3 rock + 1/3 paper + 1/3
scissors is log(3) = 1.58 bits, which is the maximum possible for this game.

¢ Von Neumann’s poker models (and all modern ones) favor mixed strategies.
But unlike rock-paper-scissors, the best strategy is not the one that maximizes
entropy. The best poker players balance their strategies by mixing profitable
plays with occasional entropy-increasing bluffs and slowplays.

"'J
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5.1 Von Neumann’s entropy

¢ Von Neumann (and possibly also Felix Bloch and Lev Landau) developed an
alternate way to write quantum mechanics in terms of density operators.

¢ Density operators are useful for describing mixed states and systems in
thermal equilibrium. The related von Neumann entropy is also used to
describe entanglement in quantum computing research.

¢ Density operators are defined as real combinations of projection operators.
A projection Pis a linear operator suchthat P=P2 (= P3=P4=...)

{ For any vector ¥, there is a projection Py . In Dirac notation, Py = |¥)(J] .
This notation says, “Give Py a vector. It will take the inner product of that
vector with W to produce a number, and it will output ¥ times that number.”

o=|o|=2=]4 0 |b>=[
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5.2 Von Neumann’s entropy

A pure quantum state can be represented by some state vector ¥ in some
complex vector space. Its density operator is defined p = Py..

Mixed quantum states represent uncertain preparation procedures. For
example, Alice prepares a spin-1/2 particle in the S; eigenstate | T). Chuck then
performs an Sx measurement but doesn’t tell Bob the result. Bob knows the
state is now either 75 (I 1) +11)) or 7z(I 1) =1 1)), but he doesn’t know which!

Bob can still write a density operator for this mixture of states. He constructs a
projection operator for each possible state, then multiplies each operator by
50% and adds the two operators together:

1 A 1

In general, a density operator is defined (p1)P1 + (p2) P2 + (p3)Ps--- where each P
IS the projection of a state and each p the probability the system is in that state.
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5.3 Von Neumann’s entropy

¢ If Bob measures the z-spin of his mixed-state particle, the expectation value of
his measurement is the trace of the operator [Sz ][p]. (For a matrix, trace is the
sum of diagonal elements. In this case, that would be 0.)

& The diagonal elements of p are the probability of Bob finding S; to be +%2 or -1-.
If Bob wants to know the probability of finding the result of some other
measurement, he rewrites p using the eigenstates of that operator as his basis.

> The time-evolution of p follows the Von Neumann equation, the density-
operator version of the Schrodinger equation: 4 0;p = [H, p]

¢ Von Neumann'’s entropy is defined by putting p into Shannon’s entropy:
S = - an log(pn) = —T'r|plog(p)]
n

¢ Performing an observation changes p in such a way that S always increases!

o s N
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5.4 Von Neumann’s entropy
{> Question: How do you find the log of an operator ?

¢ Answer: If the operator is Hermitian, it can be diagonalized by a unitary
transformation H= U-'DU. Since Exp[U-'DU] = U Exp[D] U, we can “log” an
operator by finding the log of its eigenvalues and then similarity transforming.

¢ A projection Py made from a vector ¥ is always Hermitian. A real combination
of Hermitian operators is also Hermitian, so p is Hermitian. In fact, all its
eigenvalues are in the interval [0,1] (Remember, zero eigenvalues can be
ignored in the entropy formula because 0 log(0) = 0.)

¢ The definition of p can be used to prove that its trace Tr[p] = 1 always.

¢ The quantum version of canonical ensemble thermodynamics uses density
operators. The partition function Z and density operator p are given by:

7 =Tr[EXP(—BH) p= lEXP (—BH)

AN o
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6.0 Quantum information paradoxes

According to the Schrodinger, Heisenberg, and Von Neumann equations,
guantum time evolution is unitary. Unitary transformations are always
invertible, which means they can never destroy information about a state.

The Copenhagen interpretation, however, says that measuring a system
“collapses” it into an eigenstate. This time evolution is a projection onto a
vector, so it is singular. Singular transformations always destroy information.
Schrodinger thought this “damned quantum jumping” was absurd.

Von Neumann’s entropy is increased by projective measurements. Does this
help solve Schrodinger’s objection? If entropy is the amount of random
iInformation in a system, perhaps measurements only scramble information.

Hawking, ‘t Hooft, Susskind, and Bekenstein claim that black holes maximize
entropy for a given surface area, and if one of two entangled particles is sucked
Into the horizon, Hawking radiation is emitted as a mixed state. This is not
unitary time-evolution either! Do black holes count as observers?

AN
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Something Completely Different

¢ Humans seem to be naturally inept at understanding certain concepts from
probability and statistics. Some notorious examples are below:

¢ 1. Figher pilots at a patrticular airbase are each shot down with probability 1%
on each mission. What are the odds that a pilot completes 200 missions?

{ 2. Betting on a number in roulette pays 35:1. There are 38 numbers on an
American roulette wheel. What is the expectation value of 100 bets on red 77?

¢ 8. You are offered 3 doors to choose from on a game show. Behind one is a
car; the other two contain goats. Your host, Monty, chose the winning door
before the show by throwing a fair 3-sided die. After you choose a door, Monty
will open another door. This door will always reveal a goat, and Monty will ask
If you want to change your answer. (If your first choice is the car, he will reveal
either goat at random 50% of the time.) Should you change your answer?

X =0
AWC W
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The End

Answers:

1) 13.4%

2) -5,26 bets

3) Yes!




