Quantisation as a Problem of
Proper Values (Part VY

( Annalen der Physik (4), vol. 81, 1926)

Asstract: § 1. Elimination of the energy-parameter from the
vibration equation. The real wave equation. Non-conservative
systems. § 2. Extension of the perturbation theory to perturba-
tions which explicitly contain the time. Theory of dispersion.
§ 3. Supplementing § 2. Excited atoms, degenerate systems, continuous
spectrum. § 4. Discussion of the resonance case. § 5. Generalisation
for an arbitrary perturbation. § 6. Relativistic-magnetic generalisa-

tion of the fundamental equations. § 7. On the physical significance
of the field scalar.

§ 1. Elimination of the Energy-parameter from the Vibration Equation.
The Real Wave Equation. Non-conservative Systems

The wave equation (18) or (18") of Part II., viz.

M v - AN,
or
) v+ (B - V=0,

which forms the basis for the re-establishment of mechanics attempted
in this series of papers, suffers from the disadvantage that it expresses
the law of varation of the * mechanical field scalar ” i, neither
uniformly nor gemerally. Equation (1) contains the energy- or
frequency-parameter E, and is valid, as is expressly emphasized
in Part IL., with a definite E-value inserted, for processes which
depend on the time exclusively through a definite periodic factor :

o ZmiBt
(2) i ~real part of (e % )

Equation (1) is thus not really any more general than equaﬁon (1),

2 Gf. Ann. d. Phys. 79, pp. 361, 489; 80, p. 437, 1926 (Parts I, IL, II1.); furthen,
on the connection with Heisenberg’s theory, tbid. 79, p. 734 (p. 45). _
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which takes account of the circumstance just mentioned and does not
contain the time at all.

Thus, when we designated equation (1) or (1'), on various occasions,
as “the wave equation”, we were really wrong and would have been
more correct if we had called it a “ vibration-” or an * amplitude- ”
equation. However, we found it sufficient, because to 4 is linked
the Sturm-Liouville proper value problem—just as in the mathe-
matically strictly analogous problem of the free vibrations of strings
and membranes—and not to the real wave equation.

- Asto this, we have always postulated up till now that the potential
energy V is a pure function of the co-ordinates and does not depend
explicitly on the time. There arises, however, an urgent need for the
extension of the theory to nom-conservative systems, because it is
only in that way that we can study the behaviour of a system under
the influence of prescribed external forces, e.g. a light wave, or a
strange atom flying past. Whenever V contains the time explicitly,
it is manifestly impossible that equation (1) or (1') should be satisfied
by a function ), the method of dependence of which on the time is
as given by (2). We then find that the amplitude equation is no
longer sufficient and that we must search for the real wave equation.

For conservative systems, the latter is easily obtained. (2) is
equivdlent to

0* 4n2 B2
© =T

We can eliminate £ from (1') and (3) by differentiation, and obtain

the following equation, which is written in a symbolic manner, easy
to understand :

o 8mi N\ 16m2 3%

®) (-7 v+ o

This equation must be satisfied by every ¢ which depends on the time
as in (2), though with E arbitrary, and consequently also by every i
which can be expanded in a Fourier series with respect to the time
(naturally with functions of the co-ordinates as coefficients).
Equation (4) is thus evidently the uniform and general wave equation
Jor the field scalar 3.

It is evidently no longer of the simple type arising for vibrating
membranes, but is of the fousth order, and of a type similar to that
occurring in many problems in the theory of elasticity.! However,
we need not fear any excessive complication of the theory, OT any
necessity to revise the previous methods, associated with equation (1').
If V does not contain the time, we can, proceeding from (4), apply (2),
and then split up the operator as follows :

, 87% 8a? 8a? . 8n
SIS A D)t ags:s)

215E.g., for a vibrating plate, v2y2u+ %-:—z.;f =0. Cf. Courant-Hilbert, chap. v. § 8,
p. 256. :
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By way of trial, we can resolve this equation into two  alternative ”
equations, namely, into equation (1') and into another, which only
differs from (1') in that its proper value parameter will be called
minus E, instead of plus E. According to (2) this does not lead to
new solutions. The decomposition of (4') is not ‘absolutely cogent,
for the theorem that “ a product can only vanish when at least one
factor vanishes” is not valid for operators. This lack of cogency,
however, is a feature common to all the methods of solution of partial
differential equations. The procedure finds its subsequent justifica-
tion in the fact that we can prove the compleleness of the discovered
proper functions, as functions of the co-ordinates. This completeness,
coupled with the fact that the imaginary part as well as the real part
of (2) satisfies equation (4), allows arbitrary initial conditions to be
fulfilled by ¢ and o/fot.

Thus we see that the wave equation (4), which contains in itself
the law of dispersion, can really stand as the basis of the theory
previously developed for comservative systems. The generalisation
for the case of a time-varying potential function nevertheless demands
caution, because terms with time derivatives of ¥V may then appear,
about. which no information can be given to us by equation (4), owing
to the way we obtained it. In actual fact, if we attempt to apply
equation (4) as it stands to non-conservative systems, we meet with
complications, which seem to arise from the term in 0V /dt. 'Therefore,
in the following discussions, I have taken a somewhat different route,
which is much easier for calculations, and which I consider is justified
in principle.

We need not raise the order of the wave equation to four, in order
to get rid of the energy-parameter. The dependence of i on the time,
which must exist if (1) is to hold, can be expressed by

’ of  2mi

®) LA

as well as by (3). We thus arrive at one of the two equations
” 8n® 4ari Of

(4") V%—'}?Vﬁbq:"f 'a—t-"-'-'-o.

We will require the complex wave funciion  to satisfy one of these two
equations. Since the conjugate complex function ¢ will then satisfy
the other equation, we may take the real part of y as the real wave
function (if we require it). In the case of a conservative system
(4) is essentially equivalent to (4), as the real operator may be split

up into the product of the two conjugate complex operators if ¥ does
not contain the time.

§ 2. Exiension of the Perturbation Theory to Perturbations containing
the Time explicitly., Theory of Dispersion

Our main interest is not in systems for which the time and spatial
variations of the potential energy V are of the same order of magnitude,
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but in systems, conservative in themselves, which are perturbed by
the addition of small given functions of the time (and of the co-ordinates)
to the potential energy. Let us, therefore, write

(5) V = Vo(x) +lr(x: t):

where, as often before, « represents the whole of the configuration co-
ordinates. We regard the unperturbed proper value problem (r=0) as
solved. Then the perturbation problem can be solved by quadratures.

However, we will not freat the general problem immediately,
but will select the problem of the dispersion theory out of the vast
number of weighty applications which fall under this heading, on
account of its striking importance, which really justifies a separate
treatment in any case. Here the perturbing forces originate in an
alternating electric field, homogeneous and vibrating synchronously in
the domain of the atom; and thus, if we have to do with a linearly
polarised monochromatic light of frequency », we write

(6) | r(z, t) = 4(z} cos 2mt,
and hence
(5 V =V (x) + A(z) cos 2mvt.

Here A(x) is the negative product of the light-amplitude and the
co-ordinate function which, according to ordinary mechanics, signifies
the component of the electric moment of the atom in the direction
of the electric light-vector (say —FZew;, if F is the light-amplitude,
&, z; the charges and z-co-ordinates of the particles, and the light
is polarised in the z-direction). We borrow the time-variable part of
the potential function from ordinary mechanics with just as much or
as little right as previously, e.g. in the Kepler problem, we borrowed
the constant part. :

Using (5'), equation. (4"} becomes

N .

{7 V2¢~%(V0+A cos 27rvt)¢$‘-i—hw—?' %%'=O.

For A =0, these equations are changed by the substitution
2wikit

(8) b=u@)e *

(which is now to be taken in the literal sense, and does nof imply
pars realis) into the amplitude equation (1) of the unperturbed

problem, and we know (cf. § 1) that the totality of the solutions of
the unperturbed problem is found in this way. Let

Erand u(z); %k=1,2,3,...

" be the proper values and normalised proper functions of the unper-
turbed problem, which we regard as known, and which we will
assume to be discrete and different from one another (non-degenerate
system with no continuous spectrum), so that we may not become
involved in secondary questions, requiring special consideration.
Just as in the case of a perturbing potential independent of the
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time, we will have to seek solutions of the perturbed problem in the
reighbourhood of eack possible solution of the unperturbed problem,
and thus in the neighbourhood of an arbitrary linear combination

of the u’s, which has constant co-efficients [from (8), the u;’s to be

2niEst
combined with the appropriate time factors e* & ] The solution of

the perturbed problem, lying in the neighbourhood of a definite linear
combination, will have the following physical meaning. It will be
this solution which first appears, if, when the light wave arrived, pre-
cisely that definite linear combination of free proper vibrations was
present (perhaps with trifling changes during the * excitation ™).

Since, however, the equation of the perturbed problem is also
homogeneous—let this want of analogy with the  forced vibrations
of acoustics be expressly emphasized—it is evidently sufficient to seek
the perturbed solution in the neighbourhood of each separate

2wiEnt
(9) wlm)e™ F

as we may then linearly combine these ad lib., just as for unperturbed
solutions.

To solve the first of equations (7) we therefore now put
2wiExt

(10) P=uz)e * +w(x,t).

[The lower symbol, s.e. the second of equations (7), is henceforth
left on one side, as it would not yield anything new.] The additional
term w(z, {) can be regarded as small, and its product with the perturb-
ing potential neglected. Bearing this in mind while substituting from
(10) in (7), and remembering that wu(x) and Ey, are proper functions and
values of the unperturbed problem, we get

2 ; 2 : 2wilu
viw —%Vow —éth-?’ %@._:ES_%A cos 2t . uge” &,
(11) 2 2wt 2wt
=4_}‘1;2_ Auy, . (eT(Eth) +6T(Eg—hv)).
This equation is readily, and really only, satisfied by the substitution
il it
(12) we=w,(2)ed o pw_(z)e F BB,
where the two functions w. respectively obey the two equations
2 2
(13) Vs + S (Bt o - Vo = b

This step is essentially unigue. At first sight, we apparently can add
to (12) an arbitrary aggregate of unperturbed proper vibrations. But
this aggregate would necessarily be assumed small, of the first order
{since this has been assumed for w), and thus does not interest us at
present, as it could only produce perturbations of the second order at
most. -
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In equations (13) we have at last those non-homogeneous equations
we might have expected to encounter—in spite of the lack of analogy
with real forced vibrations, as emphasized above. This lack of
analogy is extraordinarily important and manifests itself in equations
(13} in the two following particulars. Firstly, as the * second member ™
(““ exciting force ), the perturbation function A4(z) does not appear
alone, but muliiplied by the amplitude of the free vibration already
present. 'This is indispensable if the physical facts are to be properly
taken into account, for the reaction of an atom to an incident light
wave depends almost entirely on the stafe of the atom at that time,
whereas the forced vibrations of a membrane, plate, etc., are known
to be quite independent of the proper vibrations which may be
superimposed on them, and thus would yield an obviously wrong
representation of our case. Secondly, in place of the proper value
on the left-hand side of (13), ¢.e. as “ exciting frequency ”, we do
not find the frequency v of the perturbing force alone, but rather in
one case added to, and in the other subtracted from, that of the free
vibration already present. This is equally indispensable. Otherwise
the proper frequencies themselves, which correspond to the ferm-
frequencies, would function as resonance-points, and not the differences
of the proper frequencies, as is demanded, and is xreally given by
equation (13). Moreover, we see with satisfaction that the latter
gives only the differences between a proper frequency which is actually
excited and all the others, and not the differences between pairs of
proper frequencies, of which no member is excited.

In order to investigate this more closely, let us complete the

solution. By well-known methods® we find, as simple solutions of
(13),

(1) walg)=} 3 Zmtl2)

ne1 Br—En + v
where

(15) &= [ Ay ude)un2)p@)e.

p(z) is the * density function ”, ¢.e. that function of the position-
co-ordinates with which equation (1") must be multiplied to make it
self-adjoint. The un(x)’s are assumed to be normalised. It is further
postulated that kv does mot agree evactly with any of the differences
Ey—E, of the proper values. This ““ resonance case” will be dealt
with later (cf. § 4).

If we now form from (14), using (12) and (10), the entire perburbed
vibration, we gef

(16) { Pni | @ ( @  HrE-w )
- 1S o )
‘Lb uk(w)e vote ﬂz—-:l o knun(z) Ef; - Eﬂ +hv + Ek —En —hv

Thus in the perturbed case, along with each free vibration wux(z)
occur in small amplitude all those vibrations u,(z), for which @’ +0.

1 Cf. Part IIL. §§ 1.and 2, text beside equations (8) and (24).
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The latter are exactly those, which, if they exist as free vibrations
along with u, give rise to.a radiation, which is {wholly or partially)
polarised in the direction of polarisation of the incident wave. For
apart from a factor, a's, is just the component amplitude, in this
direction of polarisation, of the atom’s electric moment, which is
oscillating with frequency (E;— Ey)/k, according to wave mechanics,
and which appears when w; and u, exist together.! The simul-
taneous oscillation, however, takes place with neither the proper
frequency E,/k, peculiar to these vibratiops, nor the frequency v of
the light wave, but rather with the sum and difference of v and Erfh
(i.e. the frequency of the one existing free vibration).

The real or the imaginary part of (16) can be considered as the
real solution. In the following, however, we will operate with the
complex solution itself. '

To see the significance that our result has in the theory of dis-
persion, we must examine the radiation arising from the simultaneous
existence of the excited forced vibrations and the free vibration,
already present. For this purpose, we form, following the method we 2
have always adopted above—a criticism follows in § 7—the product of
the complex wave function (16) and its conjugate, 4.e. the norm of the
complex wave function . We notice that the perturbing terms are
small, so that squares and products may be neglected. After a simple
reduction ® we obtain ‘

' T — )2 S (Br~ En)a ez un(z)
(17) Yf = up(x)? + 2 cos Lmvt ’EI T B T

According to the heuristic hypothesis on the electrodynamical
significance of the field scalar ¢, the present quantity—apart from a
multiplicative constant—represents the electrical density as a function
of the space co-ordinates and the time, of « stands for only three space
co-ordinates, i.e. if we are dealing with the problem of one electron.
We remember that the same hypothesis led us to correct selection
and polarisation rules and to a very satisfactory representation of
intensity relationships in our discussion of the hydrogen Stark effect.
By a patural generalisation of this hypothesis—of which more in § 7—
we regard the following as representing in the general case the density
of the electricity, which is “associated ” with one of the particles of
‘classical mechanics, or which originates in it ”, or which * corre-
sponds to it in wave mechanics”: the wntegrad of yYnp taken over all
those co-ordinates of the system, which in classical mechanics fix the

1 Cf. what follows, and § 7.
Cf. end of paper on Quantum Mechanics of Heisenber% ete., and also the
Qalculation of Intensities in the Stark Effect in Part IIT. At the firs quoted place,

the];-ea.l pert of ' was proposed instead of y¥. This was a mistake, which was corrected
in Part II.

3 We assume as previously, for the sake of simplicity, the proper functions UnlZ)
to be real, but notice that it may sometimes be much more convenient or even
imperative to work with complex apgregates of the real proper functions, e.g. in the

proper functions of the Kepler problem to work with = m¢é instead of :io: me.
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position of the rest of the particles, multiplied by a certain constant,
the classical ““ charge ” of the first particle. The yesultant density of
charge at any point of space is then represented by the sum of such
integrals taken over all the particles. )
Thus in order to find any space component whatever of the total
wave-mechanical dipole moment as a function of the time, we must,
on this hypothesis, multiply expression (17} by that function of
the co-ordinates which gives that parficular dipole- component in
classical mechanics as a function of the configuration of the point
system, e.g. by
(18) M, =Zeys,

if we are dealing with the dipole moment in the y-direction. Then
we have to integrate over all the configuration co-ordinates.
Let us work this out, using the abbreviation

(19) bin = [ My ur(eun(z)p(@)iz.

Let us elucidate further the definition (15) of the a’z,’s by recalling that
if the incident electric light-vector is given by

(20) E,=F cos 2mit,
then

91 { A(x}= -F . M(z),
(21) where M. (z)=2Zez;.

If we put, in analogy with (19),
(22) Qi = ] M (@yur(z)unl@)p(z)de,

then a'y,= — Fap,, and by carrying out the proposed integration we
find,

T 2 (En— Ex)anbin
(23) [ M wfipdx = agy + 2F cos 2mrf,n§1 (BB~
for the resulting electric moment, to which the secondary radiation, caused
by the incident wave (20), i3 to ‘e attributed.

- The radiation depends of course only upon the second (time-
variable) part, while the first part represents the time-constant dipole
moment, which is possibly connected with the originally existing. free
vibration. This variable part seems fairly promising and may meet
all the demands we are accustomed to make on a “ dispersion for-
mula . Above all, let us note the appearance of those so-called
“ negative ”’ terms, which—in the usual phraseology—correspond to
the probability of transition to a lower level (E, < E;), and to which
Kramers ! was the first to direct attention, from a correspondence

1 H. A, Kramers, Nature, May 10, 1924 ; ibid. August 30, 1924 ; Kramers and
W. Heisenberg, Zisckr. f. Phys. 31, p. 681, 1925. The description given in the latter
paper of the polarisation of the scattered light (equation 27) from correspondence
principles, is almost identical formally with ours.
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standpoint. Generally, our formula—despite very different ways of
thought and expression—may be characterised as really identical in
form with Kramer’s formula for secondary radiation. The important
connection between ., by,, the coefficients of the secondary and of
the spontaneous radiation, is brought out, and indeed the secondary
radiation is also described accurately with respect to its condition of
polarisation.? -

I would like to believe that the absolute value of the scattered
radiation or of the induced dipole moment is also given correctly by
formula (23), although it is obviously within the bounds of possibility
that an error in the numerical factor may have occurred in applying
the heuristic hypothesis introduced above, At any rate the physical
dimensions are right, for from (18), (19), (21), and (22) ax, and b;,, are
electric moments, since the squared integrals of the proper functions
were normalised to unity. If v is far removed from the emission
frequency in question, the ratio of the induced to the spontaneous
dipole moment is of the same order of magnitude as the ratio of the
additional potential energy Faz, to the  energy step ” Ey — E,,.

§ 3. Supplements to § 2. Excited Atoms, Degenerate Systems,
Continuous Spectrum

For the sake of clearness, we have made some special assumptions,
and put many questions aside, in the preceding paragraph. These have
now to be discussed by way of supplement.

First : what happens when the light wave meets the atom, when the
latter is in a state in which not merely one free vibration, u;, is excited
as hitherto assumed, but several, say two, uz and #; 2 As remarked
above, we have in the perturbed case simply to combine additively
the two perturbed solutions (16) corresponding to the suffix % and the
suffix I, after we have provided them with constant (possibly complex)
coefficients, which correspond to the strength presumed for the free
vibrations, and to the phase relationship of their stimulation. Without
actually performing the calculation, we see that in the expression for
Ynf and also in the expression (23) for the resulting electric moment,
there then occurs not merely the corresponding linear aggregate of the
terms previously obtained, s.c. of the expressions (17) or (23) written
with k, and then with I. We have in addition “ combination terms ”,
namely, considering first the greatest order of magnitude, a term in

2wi
(24) wlzyu(z)e® ",
which gives again the spontaneous radiation, bound up with the co-

! 1t is hardly necessary to say that the two directions which, for sim licity, we
have designated as * 2.direction ” and * y-direction ” do not require to %e exactly
perpendicular to one another. The one is the direction of polarisation of the incident
wave ; the other is that polarisation component of the secondary wave, in which we
are specially interested.
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existence of the two free vibrations; and secondly perturbing terms of
the first order, which are proportional to the perturbing field amplitude,
and which correspond to the interaction of the forced vibrations
belonging to u; with the free vibration #;—and of the forced vibrations
belonging to u; with u;z. The frequency of these new terms appearing
in (17) or (23) is not v but

(25) (vt (Be-Efhi,

as can easily be seen, still without carrying out the calculation. (New

*“ resonance denominators ”’, however, do nol occur in these terms.)

Thus we have to do here with a secondary radiation, whose frequency

neither coincides with the exciting light-frequency- nor with a spon-

Ean;ous frequency of the system, but is a combination frequency of
oth.

The existence of this remarkable kind of secondary radiation was
first postulated by Kramers and Heisenberg (loc. cit.), from corre-
spondence considerations, and then by Born, Heisenberg, and Jordan
from consideration of Heisenberg’s quantum mechanics.! As far as
I know, it has not yet been demonstrated experimentally. The present
theory also shows distinctly that the occurrence of this scattered
radiation is dependent on special conditions, which demand researches
expressly arranged for the purpose. Firstly, fwo proper vibrations u;
and w; must be strongly excited, so that all experiments made on atoms
in their normal state—as happens in the vast majority of cases-—are to
be rejected. Secondly, at least one third state of proper vibration must
exist (¢.e. must be possible—it need not be excited), which leads to power-
ful spontaneous emission, when combined with u; as well as with ;.
For the extraordinary scattered radiation, which is to be discovered, is
proportional to the product of the spontaneous emission coefficients in
question (Grabixn and ambis). The combination (uz, w) need not, in
itself, cause a strong emission. It would not matter if—+to use the
language of the older theory—this was a “ forbidden transition *.
Yet in practice we must also demand that the line (u;, w;) should
actually be emitted strongly during the expertment, for this is the only
means of assuring ourselves that both proper vibrations are strongly
excited in the same individual atoms and in a sufficiently great number
of them. If we reflect now that in the powerful term-series mostly
examined, 7.e. in the ordinary s-, p-, d-, f-series, the relations are
generally such that two terms, which combine strongly with a third,
do not do so with one another, then a special choice of the object
and conditions of the research seems really necessary, if we are to
expect the desired scattered radiation with any certainty, especially
as its frequency is not that of the exciting light and thus 1t does
not produce dispersion or rotation of the plane of polarisation, but
can only be observed as light scattered on all sides.

As far as I see, the above-mentioned dispersion theory of
Heisenberg, Born, and Jordan does not allow of such reflections as we

! Born, Heisenberg, and Jordan, Zischr. f. Phys. 35, p. 572, 1926.
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have just made, in spite of its great formal similarity to the present
one. For it only considers ome way in which the atom reacts to
incident radiation. It conceives the atom as a timeless entity, and up
till now is not able to express in its language the undoubted fact that
the atom can be in different states at different times, and thus, as has
been proved, reacts in different ways to incident radiation !

Let us turn now to another question. In § 2 the collective proper
values were postulated to be discrete and different from one another.
We now drop the second hypothesis and ask: what is altered when
multiple proper values oceur, 4.e. when degeneracy is present? Perhaps
we expect that complications then arise, similar to those we met in
the case of a time-constant perturbation (Part III. § 2), i.e. that a
system of proper functions of the unperturbed atom, suited to the
particular perturbation, must be defined by the solution of a “ secular
equation”, and applied to carry out the perturbation calculation. This
is indeed so in the case of an arbitrary perturbation, represented by
7(z, t) as in equation (5), but not so in the case of a perturbation by a
light wave (equation (6)}—at any rate, for our usual first approximation,
and as long as we suppose that the light frequency » does not coincide
with any of the spontaneous emission frequencies considered. Then the
parameter value in the double equation ( 13), for the amplitudes of the
perturbed vibrations, is not a proper value, and the pair of equations
has always the unambignous. pair of solutions (14), in which no vanish-
ing denominators occur even when Ey is a multiple value. Thus the
terms in the sum for which E, = E; are not, as mght be thought, to be
omitted, any more than the term for n=£ itself. It is worth notici
that through these terms——if one of them occurs really, i.e. with non-
vanishing ap,—the frequency »=0 also appears among the resonance
frequencies. These terms do not, of course, contribute o the “ordinary ”
scattered radiation, as we see from (23), since E,-E,=0.

The simplification, that we do not require to consider specially
any possible degeneracy present, at least in a first approximation,
is always available 2 when the time-averaged value of the perturba-
tion function vanishes, or what is the same thing, when the latter’s
Fourier expansion in terms of the time contains no constant, ¢.e. time-
independent, term. This is the case for a light wave, _

While our first postulation about the proper values—that they
should be simple—has thus shown itself to be really a superfiuous

precaution, a dropping of the second—that they should be absolutely

discrete—while leading to no alterations i principle, brings about,
however, very considerable alterations in the external appearance of the
calculation, inasmuch as integrals taken over the continuous spectrum
of equation (1) are to be added to the discrete sums in (14), (16), (17),
and (23). The theory of such representations by integrals has been

 Cf especially the concluding words of Heisenberg’s latest exposition of his
theory, Matk. Ann. 95, p. 683, 1926, in connection with this difficulty of compre-
hending the course of an event in time.

# Further discussed in § 5.
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developed by H. Weyl,! and though only for ordinary differential
equations, the extension to partials is permissible. In all brevity, the
state of the case is this.* If the homogeneous equation belonging to
the non-homogeneous equations (13), 4.e. the vibration equation (1°) of
the unperturbed system, possesses in addition to a point-spectrum a
continuous one, which stretches, say, from E=a to F=b, then an
arbitrary function f(z) naturally cannot be developed thus,

@) fle)= 2 du-we) where du=[ fleumlolplo)de

in terms of the normalised discrete proper functions w.(z) alone,
but there must be added an integral expansion in terms of the proper

solutions u(z, £), which belong to the proper values a < E <5, and
so we have

@7 f@) = :}El b - Un) + fa ’ u(e, EYYE)E,

- where to emphasize the analogy we have intentionally chosen the
same letter for the  coefficient function” ¢(E) as for the discrete
coefficients ¢,. If now we have normalised, once for all, the proper
solution u(x, E) by associating with it a suitable function of E, in such
a way that

E' 4+ A
(28) [ dzp(z) [E " (e, Byu(z, B)E =1 or =0

according to whether E belongs to the interval E’, E’ +A or not, then
in (27) under the integral sign we substitute from

. 1 E+a —
@) $E=lmx [p@fO. [ ue ENE &,

A=0 .
wherein the first integral sign refers as always to the domain of the
group of variables 2.° Assuming (28) to be fulfilled and expansion
(27) to exist—which statements are proved by Weyl for ordinary
differential equations—the definition of the “ coefficient functions ”
from (29) is almost as obvious as the well-known definition of the
Fourier coefficients,

The most important and difficult task in .any concrete case is
the carrying out of the normalisation of u(z, E), t.e. the finding of
that function of £ by which we have to multiply the {as yet not
normalised) proper solution of the continuous spectrum, in order that
condition (28) may be satisfied. The above-quoted works of Herr
Weyl contain very valuable guidance for this practical task, and also

! H. Weyl, Math. Ann. 68, p. 220, 1910; Gott. Nackr. 1910. Ci. also E. Hilb,
Sttz.-Ber. d. Physik. Mediz. Soc. Erlangen, 43, p. 68, 1911; Math. 4nn. 71, p. 76,
1911. I have to thank Herr Weyl not only for these references but also for very
valuable oral instruction in these not very simple matters.

Z 1 have to thank Herr Fues for this exposition.

3 As Herr E. Fues informs me, we can very often omit the limiting process in
practice and write u(%, E) for the inner integral, viz. always, when ﬁ(:‘;’) I (E)ult, B)dt
exists.
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some. worked-out examples. An example from atomic dynamics on
the intensities of band spectra is worked out by Herr Fues in a paper
‘appearing in the present issue of dnnalen der Physik.

_ Let us apply this to our problem, i.e. to the solution of the pair
of equations (13) for the amplitudes.w. of the perturbed: vibrations,
where we postulate as usual that the one excited Jfree vibration, u,
belongs to the discrete point-spectraum. We develop the right-hand
- side of (13) according to the scheme (27) thus,

2 2 o 2
(30) %A(x)w,(x) =% 21 a'mun(ﬁ) +% [ﬁ u(:c, E)ar ]:( .E) dE,
= a
in which a'y, is given by (15), and o’y(E) from (29} by

15)  o'uE)=lim 3 [ @@ . [ uie, BV . it
REI= (o AJP Bl g ’ T

If we imagine expansion (30) put into (13), and then expand also the
desired solution w..(x) similarly in terms of the proper solutions u,(z)
and w(z, E), and notice that for the last-named functions the left side
of (13) takes the value

2
O Bet by~ EpJun(a)
or
8x2
Bl - Eyula, B),
then by “ comparison of coefficients ” we obtain as the generalisation
of (14)

' 1 2 delia() > &'d(EYu(z, E)
(14)  wi@)=} = E""_"‘“k-E,,ihv*%[, 5 AF.
The further procedure is completely analogous to that of § 2.
Finally, we get as additional term for (23)

' - (B~ E)o/y E)u(¢, E)
(28°)  +2 cos 2mmt [ aép(E)M (€ )ur(€) ]: P ey o dE.
Here, perhaps, we may not always change the order-of integration with-
- out further examination, because the integral with respect to £ may pos-
sibly not converge. However, we can—as an intuitive makeshift for a
strict passage to the limit, which maybe dispensed with here—decompose

b
the integral j into many small parts, each having a range A, which is
a

sufficiently small to allow us to regard all the functions of E in
question as constant in each part, with the exception of u(z, E), for
we know from the general theory that its integral cannot be obtained
“through such a fixed partition, which is independent of £. We can
then take the remaining functions out of the partial integrals, and as
additional term for the dipole moment (23) of the secondary radiation,
obtain finally exactly the following,
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(23") 2F cos 2mvt f (‘F‘é ﬁ’%ﬁ )f:v(f JiE,

where
@) calB)=tim 1 [o@MOue). [ ut BME .,

(%) BB)=lim § [pOM (). [ ule BOIE . i

(please note the complete analogy with the formulae with the same
numbers but without the dashes in § 2).

The preceding sketch of the calculation is of course only a general
outline, given merely to show that the much-discussed influence of the
continuous spectrum on dispersion, which experiment® appears to
indicate as existing, is required by the present theory exactly in the
form expected, and to outline the way in which the calculation of the
problem is to be tackled.

§ 4. Discussion of the Resonance Case

Up till now we have always assumed that the frequency v of the
light wave does not agree with any of the emission frequencies that
have to be considered. We now assume that, say,

(31) kv:Eﬂ,""Ek>0,
and we revert, moreover, to the limiting conditions of § 2 for the sake
of simplicity (simple, discrete proper values, one single free vibration

ug excited). In the pair of equations (13), the proper value parameter
then takes the values

E
Eﬂ E = n
%) S
i.e. for the upper sign there appears a proper value, namely, E,. The
two cases are possible. Firstly, the right side of equation (13)
multiplied by p(z), may be orthogonal to the proper function u,(z)
corresponding to E,, ¢.e. we have

(33) f A (@) z)un(@)p@)ie = a'p =0,

which means, physically, that if w; and u, exist together as free
vibrations they will give rise to no spontaneous emission or to one
which is polarised perpendicularly to the direction of polarisation
of the incident light. In this case the critical equation (13) also again
possesses a solution, which now, as before, is given by (14), in which
the catastrophic term vanishes. This means physically—in the old
phraseology—that a “forbidden transition” cannot be stimulated
through resonance, or that a * tramsition ”’, even if not forbidden,

? K. F. Herzfeld and K. L. Wolf, Aan. d. Phys. 76, p. 71, 567, 1925 ; H. Kollmann
and H. Mark, Die Nw. 14, p. 648, 1826.
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cannot be caused by light which is vibrating perpendicularly to
the direction of polarisation of that light which would be emitted
by the “ spontaneous transition >.

Otherwise, secondly, (33) is not fulfilled. Then the critical equa-
tion possesses no solution. Statement (10), which assumes a
vibration which differs very little—by quantities of the order of the
light amplitude F—from the originally existing free vibration, and
1s the most general possible under this assumption, thus does not then
lead to the goal. No solution, therefore, exists which only differs
by quantities of the order of F from the original free vibration. The
incident light has thus & varying influence on the state of the system,
which bears mo relation to the magnitude of the Light amplitude.
What influence ¢ 'We can judge this, still without further calculation,
if we start out from the case where the resonance condition (31) is
not exactly but only approximately fulfilled. Then we see from
(16) that wun(x) is excited in unusually strong forced vibrations,
on account of the small denominator, and that—not less important—
the frequency of these forced vibrations approaches the natural
proper frequency En/h of the proper vibration u,. (All this is, indeed,
very sumilar to, yet in a way of its own different from, the resonance
phenomena encountered elsewhere ; otherwise I would not discuss it
so minutely.)

In a gradual approach to the critical frequency, the proper
vibration u,, formerly not excited, whose possible. existence is
responsible for the crisis, is stimulated to 2 stronger and stronger
degree, and with a frequency more and more closely approaching
its own proper frequency. In contradistinction to ordinary resonance
phenomena there comes a point, and that even before the critical
frequency is reached, where our solution does not represent the
circumstances correctly any longer, even under the assumption that
our obviously “undamped ” wave postulation is strictly correct.
For we have in fact regarded the forced vibration w as small com-
pared with the existing free vibration and neglected a squared term
(in equation (11)).

I believe that the present discussion has already shown, with
sufficient clearness, that in the resonance case the theory will actually
give the result it ought to give, in order to agree with Wood's
resonance phenomenon: an increase of the proper vibration ., which
causes the crisis, to a finite magnitude comparable with that of the
originally existing w, from which, of course, * spontaneous emission >
of the spectral line (uz, u,) results. I do not wish, however, to
attempt to work out the calculation of the resonance case fully
here, because the result would be of little value, so long as the
reaction of the emitted radiation on the emitting system is not
taken into account. Such a reaction must exist, not only because
there is, no ground at all for differentiating on principle between the
light wave which is incident from outside, and that which is emitted
by the system itself, but also because otherwise, if. several proper
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vibrations were simultaneously excited in a system left to itself, the
spontaneous emission would continue indefinitely. This required back-
coupling must act so that in this case, along with the light emission,
the higher proper vibrations gradually die down, and, finally, the
fundamental vibration, corresponding to the normal state of the system,
alone remains. The back-coupling is evidently exactly analogous to

2
the reaction of radiation ('3_2:753”) in the classical electron theory.

This analogy also allays the increasing apprehension caused by the
previous neglect of this back-coupling. The influence of the relevant
term (probably no longer linear) in the wave equation will generally be
small, just as in the electron the back pressure of radiation is generally
very small compared with the force of inertia and the external field
strength. In the resonance case, however—just as in the electron
theory—the coupling with the proper light wave will be of the same
order as that with the incident wave, and must be taken into account,
if the * equilibrium ”’ between the different proper vibrations, which
sets-in for the given irradiation, is to be correctly computed.

Let it be expressly remarked, however, that the back-coupling term
is not necessary for averting a resonance catastrophe! Such can never
occur in any circumstances, because according to the theorem of the
persistence of normalisation, proved below in § 7, the configuration
space integral of yaf always remains normalised to the same value,
even under the influence of arbitrary external forces—and indeed
quite automatically, as a consequence of the wave equation (4”).
The amplitudes of the §i-vibrations, therefore, cannot grow indefinitely ;
they have, ‘“on the average”, always the same value. If one
proper vibration waxes, then another must, therefore, wane.

§ 5. Generalisation for an Arbitrary Perturbation

If an arbitrary perturbation is in quesfion as was assumed in
equation (5) at the beginning of § 2, then we shall expand the per-
turbation energy r(z,t) as a Fourier series or Fourier integral in terms
of the time. The terms of this expansion have, then, the form (6)
of the perturbation potential of a light wave. We see immediately
that on the right-hand side of equation (11) we then simply get two
series (or, possibly, integrals) of imaginary powers of e, instead of
merely two terms. If none of the exciting frequencies coincide
with a critical frequency, we get the solution in exactly the same way
as described in § 2, but, naturally, as Fourier series (or possibly Fourier
integrals) of the time. It serves no purpose to write down the formal
expansions here, and 2 more exact working out of separate problems
lies outside the scope of the present paper. Yet an important point,
already touched upon in § 3, must be mentioned. '

Among the critical frequencies of equation (13), the frequency
v=0, from E;—E;=0, also generally figures. For in this case also one
proper value, namely, E;, appears on the left side as proper value
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parameter. Thus, if the frequency 0, s.e. a term mdependent of the
time, occurs in the Fourier expansion of the perturbation function
r(z, 1), we cannot reach our goal by exactly the earlier method. We easily
see, however, how it must be modified, for the case of a time-constant
perturbation is known from previous work (cf. Part II1.). We have
then to consider, at the same time, a small alteration and possibly
a splitting up of the proper value or values of the excifed free
vibrations, .. in the indices of the powers of e in the first term on
the right hand of equation (10) we have to replace E; by E;, plus a
small constant, the perturbation of the proper value. Exactly as
described in Part III., § 1 and § 2, this perturbation is defined by
the postulation that the right side of the critical Fourier component
of our equation (13) is to be orthogonal to u (or possibly to all the
proper functions belonging to E,).

The number of special problems, which fall wunder the question
formulated in the present paragraph,is extraordinarilygreat. By super-
posing the perturbations due to a constant electric or magnetic field
and a light wave, we obtain magnetic and electric double refraction,
and magnetic rotation of the plane of polarisation. Resonance
radiation in a magnetic field also comes under this heading, but for
this purpose we must first obtain an exact solution for the resonance
case discussed in § 4. Further, we can treat the action of an a-particle
or electron flying past the atom? in this way, if the encounter is not
too close for the perturbation of each of the two systems to be
calculable from the undisturbed motion of the other. All these
questions are mere matbers of calculation as soon as the proper
values and functions of the unperturbed systems are known. It is,
therefore, to be hoped that we will succeed in defining these functions,
at least approximately, for heavier atoms also, in analogy with the

approximate definition of the Bohr electronic orbits which belong to
different types of terms,

§ 6. Relativistic-magnetic Generalisation of the Fundamental Equations

As an appendix to the physical problems just mentioned, in which
the magnetic field, which has hitherto been completely ignored in this
series of papers, plays an important part, I would like to give,
briefly, the probable relativistic-magnetic generalisation of the basic
equations (4"), although I can only do this meantime for the one
electron problem, and only with the greatest possible reserve—the latter
for two reasons. [Firstly, the generalisation is provisionally based on
a purely formal analogy. Secondly, as was mentioned in Part I.,
though it does formally lead in the Kepler problem to Sommerfeld’s
fine-structure formula with, in fact, the * half-integral ” azimuthal
and radial quantum, which is generally regarded as correct to-day,

! A very interesting and successful attempt to compare the action of flying
charged particles with the action of light waves, through a Fourier decomposition of
their field, is to be found in & paper by E. Fermi, Zischr. f. Phys. 29, p. 315, 1924,
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nevertheless there is still lacking the supplement, which is necessary
to secure numerically correct diagrams of the splitting up of the
hydrogen lines, and which is given in Bohr’s theory by Goudsmit
and Uhlenbeck’s electronic spin,

The Hamilton-Jacobi partial differential equation for the
Lorentzian electron can readily be written :

G -Gy -Gy )

- (%Izz - -2-91,)2 - m3c? =0,

(34)

Here ¢, m, ¢ are the charge and mass of the electron, and the velocity
of light; V, 2 are the electro-magnetic potentials of the external
electro-magnetic field at the position of the electron, and W is the
action function. }
From the classical (relativistic) equation (34) I am now attempting
to derive the wave equation for the electron, by the following purely
Sformal procedure, which, we can verify easily, will lead to equations
(4", if it is applied to the Hamiltonian equation of a particle
moving in an arbitrary field of force in ordinary (non-relativistic)
mechanics. After the squaring, in equation (34), I replace the quantities

( oW oW oW oW
ot zox o0y Oz

(35) < by the respective operators
h o h 0 R 0 h o
\ YImd Tmor TImoy Tomos

The double linear operator, so obtained, is applied to a wave function
¥ and the result put equal to zero, thus®

: 1 0% __4mie/V O
B0 V-G 5ET T (G5 N end ¥)

4%

+2 (o 2y <0

(The symbols 2 and grad have here their elementary three-dimensional
Euclidean meaning.}) The pair of equations (36) would be the possible
relativistic-magnetic generalisation of (4") for the case of a single
electron, and should likewise be understood to mean that the complex
wave function has to satisfy either the one or the other equation.
From (36) the fine structure formula of Sommerfeld for the hydro-
gen atom may be obtained by exactly the same method as is deseribed
m Part 1., and also we may derive (neglecting the term in 92) the
normal Zeeman effect as well as the well-known selection and polarisa-
tion rules and intensity formulae. They follow from the integral
relations between Legendre functions introduced at the end of Part II1.
For the reasons given in the first section of this paragraph, I
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withhold the detailed reproduction of these calculations meantime,

and also in the following final paragraph refer to the  classical ”, and
not to the still incomplete relativistic-magnetic version of the theory.

§ 7. On the Physical Significance of the Fleld Seaiar

The heuristic hypothesis of the electro-dynamical meaning of the
field scalar i, previously employed in the one-electron problem, was
extended ofi-hand to an arbitrary system of charged particles in § 2,
and there a more exhaustive description of the procedure was promised.
We had calculated the density of electricity at an arbitrary point in
space as follows. We selected one particle, kept the trio of co-ordinates
that describes its position in ordinary mechanics fixed ;. integrated
i over all the rest of the co-ordinates of the system and multiphied
the result by a certain constant, the “ charge ” of the selected particle ;
we did a similar thing for each particle (trio of co-ordinates), in each
case giving the selected particle the same position, namely, the
position of that point of space at which we desired to know the electric
density. The latter is equal to the algebraic sum of the partial results.

This rule is now equivalent to the following conception, which
allows the true meaning of ¥ to stand out more clearly. 5 is a
kind of weight-function in the system’s configuration space. The
wave-mechanical configuration of the system is a superposition of
many, strictly speaking of all, point-mechanical configurations kine-
matically possible. Thus, each point-mechanical configuration con-
tributes to the true wave-mechanical configuration with a certain
weight, which is given precisely by yuf. If we like paradoxes, we may
say that the system exists, as it were, simultaneously in all the
positions kinematically imaginable, but not © equally strongly ” in
all. In macroscopic motions, the weight-function is practically con-
centrated in a small region of positions, which are practically
indistinguishable. The centre of gravity of this region in configuration
space travels over distances which are macroscopically perceptible.
In problems of microscopic motions, we are in any case interested
also, and in certain cases even mainly, in the varying distribution
over the region.

This new interpretation may shock us at first glance, since we
have often previously spoken in such an intuitive concrete way of the
“y-vibrations ” as though of something quite real. But there is
something tangibly real behind the present conception also, namely, the
very real electrodynamically effective fluctuations of the eleciric space-
density. The ¢-function is to do no more and no less than permit of
the totality of these fluctuations being mastered and surveyed mathe-
matically by a single partial differential equation. We have repeatedly
called attention * to the fact that the y-function itself cannot and may
notbe interpreted directly in termsof three-dimensional space-—however
much the one-electron problem tends to mislead us on this point—

- 1 End of Part IL (p. 39); paper on Heisenberg’s quantum mechanies {p. 60).
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because it' is in general a function in configuration space, not real
space.

Concerning such a weight-function in the above sense, we would
wish its integral over the whole configuration space to remain constantly
normalised to the same unchanging value, preferably to unity. We
can easily verify that this is necessary if the total charge of the system
is to remain constant on the above definitions. Even for non-
conservative systems, this condition must obviously be postulated.
For, naturally, the charge of a system is not to be altered when, e.g.,a
light wave falls on it, continues for a certain length of time, and then
ceases, (N.B.—This is also valid for ionisation processes. A dis-
rupted particle is still to be included in the system, until the separation
is also logically—by decomposition of configuration space—completed.)

The question now arises as to whether the postulated persistence
of normalisation is actually gusranteed by equations (4"), to which
s is subject. If this were not the case, our whole conception would
practically break down. Fortunately, it is the case. Let us form

d o ;0
@0 2 (oo = [(45 + 335 Jpda.

Now, i satisfies one of the two eqﬁations (4", and ¢ the other.
Therefore, apart from a multiplicative constant, this integral becomes

(38) [~ Fvrpipds =2 [(Tv2R - Ry*T)pds,
where for the moment we put
=R +d.

According to Green’s theorem, integral (38) vanishes identically ; the
sole necessary condition that functions R and J must satisfy for this—
vanishing in sufficient degree at infinity—means physically nothing
more than that the system under consideration should practically be
confined to a finite region.

We can put this in a somewhat different way, by not immediately
integrating over the whole configuration space, but by merely changing
the time-derivative of the weight-function into a divergence by
Green’s transformation. Through this we get an insight into the

question of the flow of the weight-function, and thus of electricity.
The two equations

(4") o h(_, Bn?
BV T

o 3 872\ ¢

Ut 20
are multiplied by p and pi Tespectively, and added Hence
9, h - -
(39) 2 o= pp . By -0,

rry)
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To carry out in exienso the transformation of the right-hand side,
we must remember the explicit form of our many-dimensional, non-
Euclidean, Laplacian operator:?

' 0 oy :l

2.y . i
(40) pv=Zal e T(n 20)]
By a small transformation we readily obtain

0, ;7n P o0 o o
W) e =g T T (05e) - (0 22|
The right-hand side appears as the divergence of a many-dimensional
real vector, which is evidently to be interpreted as the current density
- of the weight-function in configuration space. Equation (41) is the
continusty equation of the weight-function.

From it we can obtain the equation of continuity of electricity, and,
indeed, a separate equation of this sort is valid for the charge density
“ originating from each separate particle”. Let us fix on the ath
particle, say. Let its ““ charge ” be e,, its mass m,, and let its co-
ordinate space be described by Cartesians z,, y,, z., for the sake of
simplicity. We denote the product of the differentials of the remaining
co-ordinates shortly by da’. Over the latter, we integrate equation

(41), keeping 2., y., %, fized. As the result, all terms except three
disappear from the right-hand side, and we obtain

e[|~ oo ] [ -4 |
(42) A *%U (v2- aa—i)d”']*“ : } |
\ = 4;”;;% div, U(J grad. ¢~ grad, @d::’].

In this equation, div and grad have the usual three-dimensional
Euchdean meaning, and z,, y,, 2. are to be interpreted as Cartesian
co-ordinates of real space. The equation is the continuity equation
of that charge density which “ originates from the ath particle”. If
we form all the others in an analogous fashion, and add them together,
we obtain the total equation of continuity. Of course, we must
emphasize that the interpretation of the integrals on the right-hand side
as components of the current density, is, as in all such cases, not
absolutely compulsory, because a divergence-free vector could be added
thereto.

To give an example, in the conservative one-electron problem,
if s is given by

1 Cf. on Heisenberg’s theory, equation (31). The quantity th
by Af-f- ip?spg;r * density furgction ”?Ex) %:.g. r? s:g.n 8) ‘in t]azta-i'lica.l poji'arsfre fl('l ?;02?12
knnetic energy as function of the position co-ordinates and momenta, the suffix at T
denoting differentistion with respect to a momentum. In eguations (31) and (32),

loe. cil., unfortunately by error the suffix k is used twice, once for the summation and
then also as a representative suffix in the argument of the functions.
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(43) P =§c;_.u,,ez’“"z‘+""x {ck, Or real constants),
we get for the current density J
44) J= ;:1—;"-21 (El) cxe{vg grad wug —uz grad ) . sin [27(vi ~»)t + O = 61).

We see, and this is valid for conservative systems generally, that,
if only a single proper vibration is excited, the current components
disappear and the distribution of electricity is constant in time. The
latter is also immediately evident from the fact that i becomes con-
stant with respect to the time. This is still the case even when several
proper vibrations are excited, if they all belong to the same proper
value. On the other hand, the current density then no longer needs
to vanish, but there may be present, and generally is, a stationary
current distribution. Since the one or the other occurs in the unper-
turbed normal state at any rate, we may in a certain sense speak of
a return to electrostatic and magnetostatic atomic models. In this way
the lack of radiation in the normal state would, indeed, find a
startingly simple explanation.

I hope and believe that the present statements will prove useful
in the elucidation of the magnetic properties of atoms and molecules,
and further for explaining the flow of electricity in solid bodies.

Meantime, there is no doubt a certain crudeness in the use of a com-
plex wave function. If it were unavoidable ¢n principle, and not merely
a facilitation of the calculation, this would mean that there are
in principle {wo wave functions, which must be used together in order
to obtain information on the state of the system. This somewhat
unacceptable inference admits, I believe, of the very much more
congenial interpretation that the state of the system is given by
a real function and its time-derivative. Our inability to give more
accurate information about this is intimately connected with the fact
that, in the pair of equations (4"), we have before us only the substitute
—extraordinarily convenient for the calculation, to be sure—for a real
wave equation of probably the fourth order, which, however, I have
not succeeded in forming for the non-conservative case.

Zirich, Physical Institute of the Universtty.
(Received June 23, 1926.)



