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Lie group theory was initially developed to facilitate the solution of differ-
ential equations. In this guise its many powerful tools and results are not
extensively known in the physics community. This Chapter is designed
as an antidote to this anemia. Lie’s methods are an extension of Galois’
methods for algebraic equations to the study of differential equations. The
extension is in the spirit of Galois’ work: the technical details are not sim-
ilar. The principle observation — Lie’s great insight — is that the simple
constant that can by added to any indefinite integral of dy/dx = g(x) is in
fact an element of a continuous symmetry group — the group that maps
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solutions of the differential equation into other solutions. This observation
was used — exploited — by Lie to develop an algorithm for determining
when a differential equation had an invariance group. If such a group
exists, then a first order ODE can be integrated by quadratures, or the
order of a higher order ODE can be reduced.

Galois inspired Lie. If the discrete invariance group of an algebraic

equation could be exploited to generate algorithms to solve the alge-

braic equation “by radicals,” might it be possible that the continuous

invariance group of a differential equation could be exploited to solve

the differential equation “by quadratures?” Lie showed emphatically in

1874 that the answer is YES!, and work has hardly slowed down in the

field that he pioneered from that time to the present.

But what is the group that leaves the solutions of a differential equa-

tion invariant — or maps solutions into solutions? It turns out to be

none other than the trivial constant that can be added to any indefinite

integral. The additive constant is an element in a translation group.

We outline Lie’s methods for first order ordinary differential equations.

First, we study the simplest first order equation in one independent

variable x and one dependent variable y: dy
dx = g(x). This is treated in

Sect. 16.1. In that Section we set up the general formulation in terms of

a constraint equation dy/dx = p and a surface equation F (x, y, p) = 0.

The special forms of the surface and constraint equation are exploited

to write down the solution by quadratures.

Lie’s methods are presented in Sect. 16.2 in a number of simple,

easy to digest steps. Taken altogether, these provide an algorithm for

determining whether an ODE possesses a symmetry and, if so, what

that symmetry is. Transformation to a set of canonical variables R,S, T

is algorithmic. The canonical variable R(x, y) is the new dependent

variable (like x), S(x, y) is the new dependent variable (like y), and

T (x, y, p) is the new constraint between S and R (like dy/dx). In this

new coordinate system the surface and constraint equations assume the

desired forms F (R,−, T ) = 0 and dS/dR = f(R,−, T ). The system has

been reduced to quadratures, and integration follows immediately.

Despite the simplicity of the algorithm, it is not easy to understand

these steps without a roadmap. Such is provided in Sect. 16.3, where a

simple example is discussed in detail.

Lie’s methods extend in many different directions. Several directions

are indicated in Sect. 16.4.
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16.1 The Simplest Case

The simplest first order ordinary differential equation to deal with has

the form
dy

dx
= g(x) (16.1)

Here x is the independent variable and y is the dependent variable. The

solution of this equation is (almost) trivially

y = G(x) =

∫

g(x) dx (+ additive constant) = G(x) + c (16.2)

If we write the solution in the form y − G(x) = 0, then the surface

y+ c−G(x) = 0 is also a solution of the original equation (16.1). There

is a one-parameter group of displacements that maps one solution into

another. These displacements can be represented by the Taylor series

displacement operator ec ∂
∂y , for

ec ∂
∂y [y −G(x) = 0] = y + c−G(x) = 0 (16.3)

In short, the “trivial” additive constant is in fact a one-parameter group

of translations that maps solutions (16.2) of (16.1) into other solutions

of the original simple equation (16.1). This translation group plays the

same role for first order ordinary differential equations that the symmet-

ric group Sn plays for nth degree algebraic equations.

For convenience, we express the derivative dy/dx as a coordinate p.

The first order differential equation (16.1) can be written in the form

F (x, y, p) = 0, where F (x, y, p) = p − g(x) for the particular case at

hand. There are two relations among the three variables x, y, p. They

are given by the surface equation and the constraint equation:

Surface Equation : F (x, y, p) = 0

Constraint Equation : p = dy/dx when F (x, y, p) = 0
(16.4)

It is useful to express the action of the three partial derivatives ∂/∂x, ∂/∂y, ∂/∂p

on the surface F (x, y, p) defining the ordinary differential equation. It is

also useful to express the action of the generator of infinitesimal displace-

ments that maps solutions of this equation into other solutions of this

equation, on the three coordinates. These two relations are summarized

as follows:






∂
∂x
∂
∂y
∂
∂p






[p− g(x)] =





⋆

0

⋆
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x
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0

1

0



 (16.5)
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These two equations will be generalized to the determining equation for

the infinitesimal generator of the invariance group and the determining

equations for the canonical coordinates.

16.2 First Order Equations

In this section we will summarize Lie’s approach to the study of dif-

ferential equations [14, 18, 70]. We do this for equations of first order

(dny/dxn, n = 1) and first degree (depends on pm = (dy/dx)m, m = 1).

The results are independent of degree.

If the equation that defines the first order ODE, F (x, y, p) = 0, is not

of the form p − g(x), so that ∂
∂yF (x, y, p) 6= 0, then we can attempt to

find

a. A one-parameter group that leaves F (x, y, p) = 0 unchanged.

b. A new “canonical” coordinate system (R,S, T ). In this coordinate

system R = R(x, y) is the independent variable, S = S(x, y)

is the dependent variable, and T = T (x, y, p) is the new con-

straint variable. In this canonical coordinate system the surface

equation F (x, y, p) = 0 is not a function of the new dependent

variable: F (R,−, T ) = 0.

In this new coordinate system the source term for the constraint equation

is also independent of the dependent variable: dS/dR = f(R,−, T ).

16.2.1 One Parameter Group

We search for a one-parameter group of transformations that leaves the

surface equation invariant by changing variables in the (x, y) plane ac-

cording to

x → x̄(ǫ) = x+ ǫξ(x, y) +O(ǫ2) x̄(ǫ = 0) = x

y → ȳ(ǫ) = y + ǫη(x, y) +O(ǫ2) ȳ(ǫ = 0) = y

p → p̄(ǫ) = p+ ǫζ(x, y, p) +O(ǫ2) p̄(ǫ = 0) = p
(16.6)

In the simplest case Eq. (16.1), this one-parameter group is x→ x and

y → y + ǫ, so that ξ = 0, η = 1, and ζ = 0.

16.2.2 First Prolongation

The function ζ(x, y, p) is not independent of the functions ξ(x, y) and

η(x, y). The former is related to the latter pair by the first prolonga-
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tion formula. Specifically,

p̄ =
dȳ

dx̄
=
dȳ/dx

dx̄/dx
=
p+ ǫ(ηx + ηyp)

1 + ǫ(ξx + ξyp)
−→ p+ ǫ

[

ηx + (ηy − ξx)p− ξyp2
]

(16.7)

to first order in ǫ, where ηx = ∂η/∂x, etc. As a result

ζ(x, y, p) = η(1)(x, y, y(1)) = ηx + (ηy − ξx)p− ξyp2 (16.8)

16.2.3 Determining Equation

The surface equation must be unchanged under the one-parameter group

of transformations, so that

F (x, y, p) = 0→ F (x̄(ǫ), ȳ(ǫ), p̄(ǫ))
ǫ small−→ F (x+ ǫξ, y + ǫη, p+ ǫζ)

= F (x, y, p) + ǫ

(

ξ
∂

∂x
+ η

∂

∂y
+ ζ

∂

∂p

)

F (x, y, p) + h.o.t. (16.9)

These are the leading two terms in the Taylor series expansion

F (x̄(ǫ), ȳ(ǫ), p̄(ǫ)) = eǫXF (x, y, p) = 0 (16.10)

where the generator of infinitesimal displacements for the one parameter

group that leaves the surface equation invariant is

X = ξ
∂

∂x
+ η

∂

∂y
+ ζ

∂

∂p
(16.11)

The first two terms in Eq. (16.9) and (16.10) are

F (x, y, p) = 0 and XF (x, y, p) = 0 (16.12)

These are called the determining equations. The determining equa-

tions (16.12) are generalizations of equations (16.5).

Specifically, these equations are used to determine the functions ξ(x, y),

η(x, y), and ζ(x, y, p) that define the infinitesimal generator X . These

functions are determined by an algorithm based on linear algebra. There

are recent versions depending on sophisticated methods of algebraic

topology. These methods are elegant improvements of a conceptually

simple brute-strength procedure that we summarize briefly. The sur-

face equation F (x, y, p) = 0 is solved for p as a function of x and y:

p = p(x, y). This expression is substituted into the determining equa-

tion XF (x, y, p(x, y)) = 0, so that this equation depends only on two
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independent variables x and y. The generators of the infinitesimal dis-

placements, ξ(x, y) and η(x, y), are represented by Laurent expansions,

or Taylor series expansions if convergent solutions are sought:

ξ(x, y) =
∑

i,j

ξijx
iyj 0 ≤ i, j, i+ j ≤ dξ (16.13)

and similarly for η. These representations are truncated at finite degrees

dξ, dη. The determining equation XF = 0 is expanded into the form
∑

Cijx
iyj = 0. Each coefficient Cij must separately vanish, by standard

linear independence arguments. This gives a set of simultaneous linear

equations in the expansion amplitudes ξij , ηij . In general, there are

more equations than unknowns. Since the equations are homogeneous,

there are no nontrivial solutions if the rank of this system is equal to the

number of unknowns. The number of independent solutions (up to an

overall scaling factor) is equal to the corank of this system of equations.

This is not larger than one for first order equations but may exceed one

for second and higher order equations. This algorithm is effective when

ξ(x, y) and η(x, y) are polynomials of finite degree.

16.2.4 New Coordinates

If an infinitesimal generator X can be constructed from the determining

equations, then it is possible to determine a new system of coordinates

R,S, T which “straightens out” the surface equation. This is done by

solving the determining equations for canonical coordinates. These are

a set of partial differential equations that are analogous to the equations

on the right hand side of Eq. (16.5). For convenience, we summarize

the determining equations for the infinitesimal generator and for the

canonical coordinates, analogs of the two equations in Eq. (16.5), as

follows:

XF = 0 X





R(x, y)

S(x, y)

T (x, y, p)



 =





0

1

0



 (16.14)

The three linear partial differential equations on the right determine

the new canonical coordinates: the independent variable R(x, y), the

dependent variable S(x, y), and the new constraint T (x, y, p) between R

and S.
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16.2.4.1 Dependent Coordinate

The dependent coordinate S is determined from the differential equation

X(x, y, p)S(x, y) = 1. We require S to be independent of p, so the

condition defining S reduces to
(

ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y

)

S(x, y) = 1 (16.15)

The solution is not unique: Any function of x and y that is annihilated

by X can be added to the solution. Further, it is not important that

XS = +1: we could just as well choose a solution satisfying XS = −1

or, for that matter, XS = k 6= 0, where k is some constant.

16.2.4.2 Invariant Coordinates: Independent Variable

The two invariant coordinates R and T are unchanged under the one-

parameter transformation group. These functions obey XR = 0 and

XT = 0, which are explicitly
(

ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y

)

R(x, y) = 0

(

ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ ζ(x, y)

∂

∂p

)

T (x, y, p) = 0 (16.16)

The solutions are most simply found by the method of characteristics.

They obey the differential relations

dx

ξ(x, y)
=

dy

η(x, y)
=

dp

ζ(x, y, p)
(16.17)

The first equation is used to construct R(x, y).

16.2.4.3 Invariant Coordinates: Constraint Variable

The second equation in (16.17) is used to construct T (x, y, p). It is

often possible to construct T so that it is a function of p to the first

power. When this is possible, it is the preferred form of the nonunique

expression for the invariant cordinate T .

16.2.5 Surface and Constraint Equations

In the new coordinate system there is a constraint equation:

dS

dR
=
dS(x, y)

dR(x, y)
=
dS/dx

dR/dx
=

Sx + Syp

Rx +Ryp
(16.18)
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This derivative is independent of the parameter ǫ of the one-parameter

group. Therefore it must be independent of the coordinate S, and de-

pend only on the invariant coordinates R and T . In this new coordinate

system the surface and constraint equations are

Surface Equation : F (R,−, T ) = 0

Constraint Equation : dS/dR = f(R,−, T )
(16.19)

These are directly analogous to Eq. (16.1) and dy/dx = p in Sect. 16.1.

16.2.6 Solution in New Coordinates

To integrate the transformed equation, the surface equation is used to

determine T as a function of R: T = T (R). This expression is used in

the constraint equation, which can then “easily” be integrated to give

S =

∫

f(R,−, T (R)) dR + c (16.20)

The additive parameter c is the image of the parameter ǫ of the one-

parameter group of transformations that leaves the original surface equa-

tion F (x, y, p) = 0 invariant.

16.2.7 Solution in Original Coordinates

The inverse relation x = x(R,S), y = y(R,S) is used to express the

solution Eq. (16.20) of the transformed equation in terms of the original

coordinates.

16.3 An Example

The algorithm developed in Section 16.2 is, for all practical purposes,

impossible to understand without illustrating its workings by a partic-

ular example. To illustrate the algorithm, we use it to integrate the

equation

F (x, y, p) = xp+ y − xy2 = 0 (16.21)

Before setting out on this path, we first attempt the following scal-

ing transformation y → αy and x → βx. Under this transformation

the equation transforms to α(xp + y − (αβ)xy2) = 0. The equation

is invariant provided αβ = 1. The one-parameter group that leaves

the surface constraint F (x, y, p) = 0 invariant is x → λx, y → λ−1y,

p → λ−2p. Since there is a one-parameter invariance group for this
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differential equation, Lie’s methods are guaranteed to work. In fact, it

is possible to construct the infinitesimal generator X(x, y, p) from this

group directly.

The surface p = y2− y/x is shown in Fig. 16.1. The value of p clearly

depends on both coordinates x and y. The purpose of the change of

variables to to find a new coordinate system in which the surface is

independent of the new dependent variable S(x, y).

Fig. 16.1. The first order ODE xp + y − xy2 = 0. Here p (vertical) is plotted
over the (x, y) plane for 0.1 ≤ x ≤ 1.1 and −2 ≤ y ≤ +2. The shape of the
surface depends on both coordinates x and y.

The determining equation Eq. (16.14) is

ξ(p− y2) + η(1− 2xy) +
[

ηx + (ηy − ξx)p− ξyp2
]

x = 0 (16.22)

The functions ξ(x, y) and η(x, y) describing the generators of infinites-

imal displacements are determined following the algorithm outlined in

Sect. 16.2.3. First, we use the surface equation F (x, y, p) = 0 to find

an expression for p: p(x, y) = −y/x + y2. This is substituted into the

determining equation XF (x, y, p) = 0 to provide a functional relation
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between x and y:

ξ
(

− y
x

)

+η(1−2xy)+ηxx+(ηy−ξx)(xy2−y)−ξy
(

xy4 − 2y3 +
y2

x

)

= 0

(16.23)

We first attempt zeroth degree expressions for ξ and η: ξ = ξ00, η = η00.

When these are substituted into Eq. (16.23) we obtain three equations

for the two unknowns. The coefficients of the monomials y/x, 1, and xy

depend on the unknown parameters ξ00, η00 as follows:

Monomial ξ00 η00
y/x

x0y0 = 1

xy





−1 0

0 1

0 −2





[

ξ00
η00

]

=

[

0

0

]

(16.24)

This system of three simultaneous linear equations in two unknowns has

rank two, therefore no nontrivial solutions.

We therefore increase the degree of ξ(x, y) and η(x, y) to one and

repeat the process. The relation Eq. (16.23) between x and y is now

(ξ00 + ξ10x+ ξ01y)
(

− y
x

)

+ (η00 + η10x+ η01y)(1− 2xy) + η10x+

(η01 − ξ10)(xy2 − y)− ξ01
(

xy4 − 2y3 +
y2

x

)

= 0 (16.25)

This results in the following set of 10 equations for 6 unknowns:

Monomial ξ00 ξ10 ξ01 η00 η10 η01
y2/x

y/x

1

x

y

xy

x2y

xy2

xy3

xy4



































0 0 −2 0 0 0

−1 0 0 0 0 0

0 0 0 +1 0 0

0 0 0 0 +2 0

0 0 0 0 0 0

0 0 0 −2 0 0

0 0 0 0 −2 0

0 −1 0 0 0 −1

0 0 −2 0 0 0

0 0 +1 0 0 0





















































ξ00
ξ10
ξ01
η00
η10
η01



















=













0

0

0

0

0













(16.26)

This set of equations has rank 5, so there is one nontrivial solution. From

the first four equations we determine ξ01 = ξ00 = η00 = η10 = 0, and

from the coefficient of xy2 we learn −ξ10 − η01 = 0 so that, up to some

overall scaling factor we can take ξ(x, y) = x and η(x, y) = −y. Since
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we have found one nontrivial solution for an infinitesimal generator of

a one-parameter group of a first order equation, we can stop searching

for additional solutions to the determining equation (for second order

equations there may be additional solutions).

With this solution ξ(x, y) = x and η(x, y) = −y the prolongation

formula Eq. (16.8) gives ζ = −2p, so that the generator of infinitesimal

displacements is

X = x
∂

∂x
− y ∂

∂y
− 2p

∂

∂p
(16.27)

The infinitesimal generator is now used to determine the new set of

coordinates. We first determine the dependent coordinate S(x, y) by

attempting to solve
(

x
∂

∂x
− y ∂

∂y

)

S(x, y) = 1 (16.28)

It is useful first to seek a solution S(x, y) depending only on the single

variable y. Such a solution can be found if the equation −ydS(y)/dy = 1

can be solved. The solution, up to an additive constant, is − ln(y). We

will adopt this solution, neglecting the negative sign: S(x, y) = ln(y).

The invariant coordinates are determined using the method of char-

acteristics:
dx

x
=

dy

−y =
dp

−2p
(16.29)

The first equation for the new independent variable simplifies to ydx =

−xdy or d(xy) = 0, from which we conclude that R(x, y) = xy is an

invariant coordinate that obeys Eq. (16.14). The invariant coordinate

involving p is determined by setting −dp/2p equal to either of the other

two differentials. We set it equal to dx/x to avoid having the second in-

variant coordinate dependent on y. The equation is dx/x = −dp/2p and

the solution is (1/x)d(x2p) = 0, so that T (x, y, p) = x2p. The forward

and backward transformations between the two coordinate systems are




R

S

T



 =





xy

ln(y)

x2p









x

y

p



 =





Re−S

eS

Te2S/R2



 (16.30)

In the new coordinate system the surface equation transforms to

F (x, y, p) = xp+ y − xy2 = 0 −→ eS

[

T

R
+ 1−R

]

= 0 (16.31)

The expression within the bracket is the transformed surface equation.
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It is independent of S. This surface T = T (R,S) is plotted in Fig.

16.2. It has the desired form: a ruled surface whose shape (height) is

independent of the dependent variable S. Such a surface is sometimes

called a “cylinder.”

Fig. 16.2. The surface xp+y−xy2 = 0 transforms to the surface T/R+1−R =
0 in canonical coordinates. Here T (vertical) is plotted over the (R, S) plane
for −3 ≤ R ≤ +4 and −2 ≤ S ≤ +2. The function is a simple ruled surface,
independent of S.

The new constraint equation is

dS

dR
=
d(ln y)

d(xy)
=

p/y

y + xp
=

TeS/R2

eS + (Re−S)(Te2S/R2)
(16.32)

The surface and constraint equations are

Surface equation : T/R+ 1−R = 0

Constraint equation : dS/dR = (T/R)/(T +R)
(16.33)

The surface equation is solved for T as a function ofR: T (R) = R2−R.

This expression is substituted into the constraint equation to give a first
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order differential equation in quadratures:

dS

dR
=

1

R
− 1

R2
=⇒ S = ln(R) +

1

R
+ c (16.34)

The parameter c is the parameter of the translation group that leaves

invariant the transformed equation.

The inverse transformation, Eq. (16.30), from (R,S) to (x, y) is finally

used to rewrite the solution in terms of the original set of variables:

y =
−1

x(c+ lnx)
(16.35)

Remarks: The operator x d
dx is the infinitesimal generator for scal-

ing transformations, since eλx d
dxx = eλx. As a result, the infinitesimal

generator X has the following effect on the coordinates (x, y, p):

EXP

(

λ

{

x
∂

∂x
− y ∂

∂y
− 2p

∂

∂p

})





x

y

p



 =





eλx

e−λy

e−2λp



 (16.36)

From this scaling behavior, it is easy to see that ln(y) is linear in the

Lie translation group parameter: ln(e−λy) = ln(y) − λ. The invariant

operators come right out of the scaling transformations: xy and x2p are

unchanged by the scaling transformation. None of these operators is

unique. The operator ln(xy2) is linear and x3yp is invariant. We have

just chosen the most convenient (simplest) solutions to the equations

defining the new coordinates.

16.4 Additional Insights

Lie’s theory of infinitesimal transformation groups has been extended

in many different directions, all of which are powerful and beautiful. It

is barely possible to scratch the surface here. Instead, we content our-

selves by indicating some of the directions in which it can be extended.

These directions are simple consequences of the analyses presented in

the previous two sections.

16.4.1 Other Equations, Same Symmetry

Many differential equations can share the same invariance group. The

most general first order ordinary differential equation invariant under the

scaling group Eq. (16.36) has the form F (R,−, T ) = 0 or more simply

F (xy, x2p) = 0. The most general first order equation of first degree
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with this symmetry has the form x2p = h(xy) or dy/dx = x−2h(xy).

For the equation studied in Sect. 16.3, h(z) = −z + z2. For the Riccati

equation dy/dx+ y2 − 2/x2 = 0, h(z) = z2 − 2.

16.4.2 Higher Degree Equations

These methods work equally well with first order equations of higher

degree. For example, the first order, second degree equation y′2 + y4 −
x−4 = 0 has canonical form R4 +T 2 = 1. The original equation has two

solution branches p = ±
√

x−4 − y4, corresponding to the two solution

branches in the canonical coordinate system T = ±
√

1−R4.

16.4.3 Other Symmetries

The methods described in Sect. 16.2 and illustrated by example in Sect.

16.3 apply to any first order ordinary differential equation with a one

parameter group. Table 16.1 provides a list of symmetries that may be

encountered for ordinary differential equations. For each symmetry the

functions ξ(x, y) and η(x, y) are tabulated, as well as the first prolonga-

tion ζ(x, y, p) = η(1)(x, y, p). We also present the canonical coordinates

(R,S, T ). Since the constraint equation dS/dR depends only on the

change of variables, it also can be tabulated, and has been. The sim-

plest case, Eq. (16.1), is present in the first line of this table. The

equation studied in Sect. 16.3 is present in the eighth line of this table.

The Lie symmetries leaving the equation invariant can be determined

from this table in one of two ways. We can use the generator of in-

finitesimal displacements to compute them, as in Eq. (16.36). Or we

can look at the transformations effected by S → S′ = S + c, R′ = R. In

the latter case we find ln(y)→ ln(y) + c = ln(ecy) = ln(ȳ(c)) and since

xy = x̄(c)ȳ(c), the transformation is x̄(c) = e−cx and ȳ(c) = e+cy.

16.4.4 Second Order Equations

Second order equations can be studied by simple extensions of the meth-

ods used to study first order equations. The infinitesimal generator for

displacements now involves derivatives with respect to y(2) and is given

by

X = ξ
∂

∂x
+ η

∂

∂y
+ η(1) ∂

∂y(1)
+ η(2) ∂

∂y(2)
(16.37)
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Table 16.1. Infinitesimal generators ξ, η, ζ, canonical coordinates

R,S, T , and constraint equation dS/dR for some Lie symmetries.

Infinitesimal Generators Canonical Coordinates Constraint
ξ(x, y) η(x, y) ζ(x, y, p) R(x, y) S(x, y) T (x, y, p) dS/dR

0 1 0 x y p T
1 0 0 y x p 1/T

1/a −1/b 0 ax + by bx − ay p (b − aT )/(a + bT )
x 0 −p y ln x xp 1/T
0 y p x ln y p/y T

x/a y/b (1/b − 1/a)p yb/xa b ln y p/x(a/b−1) (bT/R)/(bT − aR(1/b))
x y 0 y/x ln y p (T/R)/(T − R)
x −y −2p xy ln y x2p (T/R)/(T + R)
2x y −p y2/x ln y yp (T/R)/(2T − R)
x 2y p y/x2 ln y p/x (T/R)/(T − 2R)
y 0 −p2 y x/y x − y/p −T/R2

0 x 1 x y/x xp − y T/R2

−y x 1 + p2
p

x2 + y2 tan−1(y/x) (y − xp)/(x + yp) −T/R
1 y/x (px − y)/x2 y/x x (xp − y)/x2 1/T
a x 1 x2

− 2ay x/a x − ap 1/(2aT )
a y p x − a ln y x/a p/y (1/a)/(1 − aT )

x b −p ey/xb y/b ey
∗ pb (bR)−1/[1 − b(R/T )(1/b)]

y b −p2 y2
− 2bx y/b y − b/p 1/(2bT )

0 ef(x) f ′ef x y/ef p − yf ′ T/ef(R)

x2 xy y − xp y/x 1/x xp − y 1/T
xy y2 yp − xp2 y/x 1/y y/p − x 1/(TR2)
xy 0 −yp− xp2 y (ln x)/y y/(xp) − lnx T/R2

0 xy y + xp x (ln y)/x xp/y − ln y T/R2

g(y) 0 −g′p2 y x/g 1/p − xg′/g T/g(R)
0 f(x) f ′ x y/f fp − f ′y T/f2(R)

f(x) 0 −f ′p y F (F ′f = 1) pf 1/T
0 g(y) g′p x G (G′g = 1) p/g T

xk+1 kxky xk(k2y/x − p) y/xk 1/xk xp − ky −k/T
kxyk yk+1 yk(p − k2xp2/y) x/yk 1/yk y/p − kx −k/T

The second prolongation can be determined from the first in a straight-

forward computation

d2ȳ

dx̄2
=

d

dx̄

(

dȳ

dx̄

)

=
d

dx̄
(p+ǫη(1)) =

D(1)(p+ ǫη(1))

D(0)(x+ ǫξ)
=
y(2) + ǫD(1)η(1)

1 + ǫD(0)ξ
=

y(2) + ǫ
(

D(1)η(1) − y(2)D(0)ξ
)

(16.38)

As a result,

η(2)(x, y, y(1), y(2)) = D(1)η(1) − y(2)D(0)ξ (16.39)
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where

D(n) =
∂

∂x
+
dy

dx

∂

∂y
+
dy(1)

dx

∂

∂y(1)
+ · · ·+ y(n+1) ∂

∂y(n)
(16.40)

It is explicitly

η(2) = ηxx+(2ηxy−ξxx)y′+(ηyy−2ξxy)y
′2−ξyyy

′3+(ηy−2ξx−3ξyy′)y′′

(16.41)

The determining equations are

F (x, y, y(1), y(2)) = 0 X(x, y, y(1), y(2))F (x, y, y(1), y(2)) = 0

(16.42)

Symmetries are found by following the algorithm described in Sect.

16.2.3 and illustrated in Sect. 16.3.

16.4.5 Reduction of Order

If a higher order equation has a known one-parameter symmetry group,

the order of the equation can be reduced by one. We illustrate as usual

by example. The general case can easily be inferred from the example.

Suppose a second order equation F (x, y, y′, y′′) = 0 is invariant under

the scaling group (16.36). Then the dependent coordinate is S = ln y

and the surface equation can be expressed in terms of three invariant

coordinates as F (R,−, T, U) = 0. Here as before R depends only on

x and y, T = T (x, y, y′), and U = U(x, y, y′, y′′) is another invariant

coordinate. How does one construct such an invariant coordinate? It is

simple to see that the derivative dT/dR is invariant under the group.

Not only is it invariant, but it is of first degree in the second order term

y(2), for

dT

dR
=
dT/dx

dR/dx
=
Tx + Tyy

(1) + Ty(1)y(2)

Rx + Ryy(1)
(16.43)

For the scaling group the new invariant coordinate is

dT

dR
=

2xy′ + x2y′′

y + xy′
(16.44)

and the most general second order equation invariant under this group

is

G(R,−, T, dT
dR

) = 0 (16.45)

This is a first order equation in the invariant coordinate T . The result

is that we have used a one-parameter symmetry group to reduce the
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order of a second order equation by one. If an additional symmetry can

be identified, the equation can be reduced to quadratures a second time

(i.e., completely integrated).

The most general second order equation invariant under the group of

scaling transformations Eq. (16.36) that is of first degree in y′′ is

dT

dR
=
x2y′′ + 2xy′

y + xy′
= g(xy, x2y′) = g(R, T ) (16.46)

This is a first order equation in T . Certain forms of the function g may

admit another Lie symmetry. If such a symmetry can be found, the

order of the equation can again be reduced by one.

16.4.6 Higher Order Equations

These ideas can be extended to higher order equations. We begin with

an nth order equation F (x, y, · · · , y(n)) = 0. As usual, we seek an in-

finitesimal generator

X = ξ
∂

∂x
+η(0) ∂

∂y(0)
+η(1) ∂

∂y(1)
+ · · ·+η(n) ∂

∂y(n)
= ξ

∂

∂x
+

n
∑

j=0

η(j) ∂

∂y(j)

(16.47)

The functions in the prolongation formulas are determined following the

procedure demonstrated in Eq. (16.38). They are recursively related:

η(0)(x, y) = η(x, y)

η(1)(x, y, y(1)) = D(0)η(0) − y(1)D(0)ξ

η(2)(x, y, y(1), y(2)) = D(1)η(1) − y(2)D(0)ξ

η(3)(x, y, y(1), y(2), y(3)) = D(2)η(2) − y(3)D(0)ξ

...
...

... (16.48)

The operator X is used as described in Sect. 16.2 to compute the func-

tions ξ(x, y) and η(x, y). There will be as many linearly independent

infinitesimal generators as the corank of the set of simultaneous linear

equations for the Taylor series coefficients of these functions.

If one or more generators can be constructed, a dependent coordinate

S can be computed by solving Eq. (16.15). The remaining invariant

coordinates are obtained from the equations

dx

ξ
=

dy

η(0)
=
dy(1)

η(1)
= · · · = dy(n)

η(n)
(16.49)
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In fact, only the first two invariant coordinates R(x, y) and T (x, y, y(1))

need be computed. The remaining invariant coordinates are dT (j)/dR(j),

j = 0 (for T ) and j = 1, 2, · · · , n−1. Each of these latter is of first degree

in y(j+1). As a result, the existence of a Lie symmetry can be used to

reduce an nth order equation to an (n− 1)st order equation.

16.4.7 Partial Differential Equations: Laplace’s Equation

Lie’s metehods can be extended to partial differential equations. We

illustrate a small part of the theory by treating Laplace’s equation in

this subsection and the heat equation in the following.

In n dimensions, Laplace’s equation with a source term is

∇2u(x1, x2, · · · , xn) = δ(x) (16.50)

This equation is clearly invariant under rotations, so that the infinites-

imal generators of rotations are Lie symmetries. The equation is also

invariant under scaling transformations xi → λxi, u → αu. Under the

scaling transformation δ(x)→ δ(λx) = λ−nδ(x), so that

∇2u = δ(x) −→ α

λ2
∇2u = λ−nδ(x) (16.51)

The equation is invariant provided α = λ2−n. The infinitesimal gener-

ators of symmetries for this equation therefore consist of generators of

rotations and scale transformations [14]:

Xij = xi∂j − xj∂i

Z = xi∂i + (2− n)u
∂

∂u
(16.52)

A new independent coordinate R = R(x, u) satisfies XR = 0, where X

is any linear combination of the generators in Eq. (16.52). A solution

is R ∼ u|x|n−2. As a result, u ∼ |x|2−n = k|x|2−n. The constant of

proportionality can be computed using the divergence theorem. Both

sides of Eq. (16.50) are integrated over the interior of a unit sphere in

Rn. The volume integral on the right is +1. The volume integral on the

left is transformed into a surface integral using the divergence theorem:
∫

V

k∇2|x|2−ndV =

∫

S=∂V

k(2−n)
n̂· dS
|x|n−1

= (2−n)kV (Sn) = 1 (16.53)

Here V (Sn) = 2πn/2/Γ(n
2 ) is the surface area of a unit sphere in Rn.
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As a result, the solution of Laplace’s equation in Rn (n 6= 2) with unit

source term at the origin is

u(x) =
k

|x|n−2
k =

−1

(n− 2)V (Sn)
(16.54)

16.4.8 Partial Differential Equations: Heat Equation

The heat equation on Rn for u(x, t) with source term

ut −∇2u = δ(x, t) (16.55)

is treated similarly [55]. It is invariant under rotations, so the operators

Xij are Lie symmetries. Under the scaling transformation u → αu,

t→ βt, and xi → λxi the equation transforms as follows:

ut −∇2u = δ(x, t) −→ α

β
ut −

α

λ2
∇2u =

1

λnβ
δ(x, t) (16.56)

Invariance under the scaling transformations places the following two

constraints on the three scaling variables (since there is only one equa-

tion): αλn = 1 and β/λ2 = 1. From these relations it is possible to

construct n+ 1 additional Lie symmetries, so that the entire set is

Xij = xi∂j − xj∂i

Yi = 2t
∂

∂xi
− xiu

∂

∂u
(16.57)

Z = 2t
∂

∂t
+ xi ∂

∂xi
− nu ∂

∂u

An invariant coordinate depending on the xi, t and u is R = utn/2e|x|
2/4t,

from which we obtain as before

u = kt−n/2e−|x|2/4t k =

(

1

2
√
π

)n

(16.58)

16.4.9 Closing Remarks

Galois resolved the problem of determining if an algebraic equation

could be solved by radicals, and if so how, between 1829 and 1832.

His manuscripts were lost, rejected, or filed for posterity. His accom-

plishments were unrecognized at his death in 1832. They were rescued

from oblivion, the black hole of French indifference to its greatest math-

ematician, by Cauchy in 1843.

Lie’s discoveries began in 1874. He realized that the hodgepodge of
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seemingly different techniques for solving differential equations that ex-

isted at that time (and still does) were almost all special manifestations

of one single principle — the invariance of solutions of ordinary differ-

ential equations under a continuous group. Lie was luckier than Galois

when it came to recognition during his lifetime.

There are several problems in the implementation of Lie’s algorithms

that have either been lightly addressed or passed over in our discussion.

These are:

(i) Under what conditions is it possible to solve the determining

equations for the surface? That is, when is it possible — or

impossible — to solve the linear partial differential equations for

ξ(x, y) and η(x, y)?

(ii) Under what conditions is it possible to solve the determining

equations for the canonical variables?

(iii) Under what conditions is it possible to solve the canonical surface

equation F (R,−, T ) = 0 for T as a function of R? When it is

possible, what is the algorithm for accomplishing this?

(iv) Under what conditions is it possible to integrate a function of a

single variable:
∫

f(R,-, T (R))dR?

The final question has been resolved for algebraic functions by Risch in

1969 [58]. He exploited the tools of Galois theory in a heavy way to

provide an algorithm for determining when an algebraic function can

be integrated in closed form, and determining the integral when the

answer to the first question is positive. We summarize the dates of these

accomplishments here

1830 Galois Solve algebraic equations.

1874 Lie Solve differential equations.

1969 Risch Integrate in closed form.

? — Solve determining equations for ξ, η.

? — Solve determining equations for R,S, T .

? — Solve F (R,−, T ) = 0 for R.

It is clear that additional algorithms are possible and desirable.

16.5 Conclusion

Lie set out to extend Galois’ treatment of algebraic equations to the

field of ordinary differential equations. Galois observed that an alge-

braic equation has a symmetry group: a set of operations that maps
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solutions into solutions. If the symmetry group has certain properties,

these properties can be used to generate an algorithm for solving the

equation.

It was Lie’s genius to see that the “trivial” additive constant that oc-

curs in the solution of a differential equation that has been reduced to

quadratures is in fact a group operation. The symmetry group in this

simplest case is simply the one parameter group of translations. Armed

with this observation, he developed algorithmic methods to attack ordi-

nary differential equations by searching for their symmetry groups. Lie

in fact studied local groups of transformations. The even more beautiful

study of global Lie groups was a later development.

In Sect. 16.2 we presented Lie’s algorithm for solving first order ordi-

nary differential equations in a number of simple steps. These involve:

(i) Introduce a set of point transformations in the x-y plane. These

are defined by the functions ξ(x, y) and η(x, y).

(ii) Construct the first prolongation ζ(x, y, p) = η(1)(x, y, y(1)) from

the functions defining the local change of variables.

(iii) Introduce the operator X = ξ ∂
∂x + η ∂

∂y + ζ ∂
∂p . This describes

a Taylor series expansion of the surface equation F (x, y, p) = 0

that defines the first order ODE.

(iv) Solve the determining equation XF = 0 when F = 0 for the

functions ξ(x, y) and η(x, y).

(v) Solve the determining equations XR = 0, XS = 1, XT = 0 for

the canonical coordinates. These are the coordinates in which

the surface is a “cylinder:” The surface equation is independent

of the new dependent variable: F → F (R,−, T ) = 0.

(vi) Construct the constraint equation dS/dR = f(R,−, T ) in this

new coordinate system.

(vii) Solve the surface equation for T as a function of R: T = T (R).

(viii) Solve the constraint equation for S: S =
∫

f(R,−, T (R)) + c.

(ix) Backsubstitute the original coordinates for the new coordinates:

x = x(R,S) and y = y(R,S) to obtain the solution of the original

equation.

The steps in this algorithm have been illustrated by working out a simple

example in Sect. 16.3.

These methods extend in any number of ways. We have indicated a

number of useful directions by example in Sect. 16.4.
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16.6 Problems

1. Show that invariance under a one-parameter group of transformations

can also be expressed in the form

dn

dǫn
F [x̄(ǫ), ȳ(ǫ), p̄(ǫ)]|ǫ=0 = 0, n = 0, 1, 2, · · · (16.59)

Show that the first two terms n = 0, 1 are exactly the determining

equations 16.12.

2. Construct the invariance group for each of the transformations

presented in Table 16.1.

3. Mechanical Similarity: The classical newtonian equation of

motion for a particle of mass m in the presence of a potential V (x) is

m
d2x

dt2
= −∇V (x)

Assume that under a scaling transformation, the mass scales with a

factor α (i.e., m → αm), x → βx, t → γt. Assume also that the

potential is homogeneous of degree k: V (βx) → βkV (x) [49]. Under

this scaling transformation show that the equation of motion transforms

to

α1β1γ−2m
d2x

dt2
= −βk−1∇V (x)

a. Show that the scaled equation is identical to the original provided

α1β2−k γ−2 = 1.

b. Set α = 1. Show that trajectories are invariant under the scaling

transformation with γ2 = β2−k. Show that in the cases k = −1, k =

0, k,= +1, k = +2 the following scaling results hold:

k Potential Type transformation

−1 Coulomb γ2 = β3

0 No Force γ2 = β2

+1 Local Gravitational Potential γ2 = β1

+2 Harmonic Oscillator γ2 = β0

The first line is a statement of Kepler’s Third Law: for closed planetary

orbits, the square of the period (γ2) is proportional to the cube of the

semiaxis (β3). If R′ and T ′ are the semiaxis and period of planet P ′ and

R and T are the semiaxis and period of planet P , and the two planets
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P and P ′ have geometrically similar orbits, β3 → (R′/R)3 = (T ′/T )2 ←
γ2. The second line is a statement of the integral of Newton’s second

law in the absence of forces in an inertial frame: the distance traveled

(β) is proportional to the time elapsed (γ). The third line is a statement

that in a local gravitational potential of the form V = mgz, the distance

fallen increases like the square of the time elapsed. The fourth line

is a statement of Hooke’s Law: in harmonic motion the period (γ) is

independent of the size of the orbit.

c. Fix γ = 1 and construct a table relating the mass and orbital scale

under the four forces described in the table above.

d. Fix β = 1 and show that the period scales like
√
M for all homoge-

neous potentials. Reconcile this result with the well-known result that

the period of a planet is independent of its mass in lowest order.

e. If the motion is bounded for all times, show

2〈T 〉 = 〈x·∇V (x)〉 = 〈kV (x)〉

where T is the kinetic energy. This is the Virial Theorem for homoge-

noeous potentials.

f. Show that the kinetic energy scales like αβ2γ−2 = βk (use a.).

Since the potential energy scales the same way, the total energy has this

scaling property.

4. Assume that the dynamics of a system are derivable from an action

principle: for example, the Euler-Lagrange equations are derived from

the variation of an action: δ
∫

L(x, ẋ)dx = 0. Show that if a scaling

transsformation leaves the Lagrangian invariant up to an overall scaling

factor, the trajectories will scale under this transformation.

5. The heat equation in one dimension is

∂2u

∂x2
=
∂u

∂t

Show that the following six differential operators vi are infinitesimal

generators of the invariance group of this equation. Show that eǫvif(x, t)

has the action shown for each of the six generators [55]:
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vi Infinitesial eǫvif(x, t) =

v1 ∂x f(x− ǫ, t)
v2 ∂t f(x, t− ǫ)
v3 u∂u eǫf(x, t)

v4 x∂x + 2t∂t f(e−ǫx, e−2ǫt)

v5 2t∂x − xu∂u e−ǫx+ǫ2tf(x− 2ǫt, t)

v6 4xt∂x + 4t2∂t − (x2 + 2t)u∂u λe−ǫλ2x2

f(λ2x, λ2t)

where λ2 = 1/(1 + 4ǫt)

6. The two dimensional wave equation is

∂2u

∂x2
+
∂2u

∂y2
=
∂2u

∂t2

Show that the following vector fields map solutions into solutions:

Displacements Pi ∂x, ∂y, ∂t

Rotations Lz x∂y − y∂x

Boosts Bi x∂t + t∂x, y∂t + t∂y

Dilations Di x∂x + y∂y + t∂t, u∂u

Inversions





ix
iy
it



 =





x2 − y2 + t2 2xy 2xt −xu
2yx −x2 + y2 + t2 2yt −yu
2tx 2ty x2 + y2 + t2 −tu













∂x

∂y

∂t

∂u









Show thatD2 = u∂u commutes with all remaining generators. Construct

the commutation relations of the remaining ten generators, and show

they satisfy the commutation relations of the conformal group in 2+1

dimensions. Show that this group is SO(2 + 1, 1 + 1) = SO(3, 2).

7. Construct the invariance group for the wave equation in 3+1 di-

mensions. This is the Maxwell equation without sources in space time.

There are 16 infinitesimal generators. Show that 15 satisfy the commu-

tation relations for the conformal group SO(3 + 1, 1 + 1) = SO(4, 2) [9].

The extra generator commutes with all the rest, and is u∂u.

8. The heat equation in one dimension is uxx−ut = 0. The infinitesi-

mal generator of symmetries for this equation is X = ξi ∂
∂xi +η ∂

∂u + · · · =
ξ1 ∂

∂x + ξ2 ∂
∂t + η ∂

∂u + · · · . Show that [66]
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ξ1 = a1 + a2x+ a3t+ a4xt

ξ2 = 2a2t+ a4t
2 + a5

η = − 1
2a3xu− a4(

1
2 t+

1
4x

2)u+ a6u+ h(x, t)

Here h(x, t) is any function that satisfies the homogeneous heat equation.

Construct the infinitesimal generators corresponding to the arbitrary

real coordinates ai and compute their commutation relations. What is

the structure of this Lie algebra?

9. Show that the scalar operator

S = t2
∂

∂t
+ tx · ∇ − 1

4
(x · x + 2nt) u

∂

∂u

is also a Lie symmetry of Eq. (16.55) with source term.

10. Noether’s Theorem for Physicists: Many dynamical prob-

lems can be expressed in an action principle format:

I =

∫ t2

t1

L(t, x, ẋ)dt, δI = 0

Specifically, the action I is stationary on a physically allowed trajectory.

The first variation leads to the Euler-Lagrange equations

d

dt

(

∂L

∂ẋi

)

− ∂L

∂xi
= 0

Under a one parameter family of change of variables: t→ t′ = T (t, x, ǫ) =

t+ǫξ(t, x), xi → x′i = Xi(t, x, ǫ) = xi+ǫηi(t, x) the action integral trans-

forms to

I =

∫ t
′

2

t
′

1

L(t′, x′, ẋ′)dt′ =

∫ t2

t1

L(t′, x′, ẋ′)
dt′

dt
dt

where dt′/dt = ∂T/∂t+ (∂T/∂xi)dxi/dt. Show that if you differentiate

the action integral with respect to ǫ, then set ǫ = 0 the result is

∫ t2

t1

(

ξ
∂L

∂t
+ ηi

∂L

∂xi
+ η

(1)
i

∂L

∂ẋi
+
dξ

dt
L

)

dt = 0

Show that by standard arguments the integrand must itself be zero.

Show that along an allowed trajectory the vanishing of the integrand

can be expressed in the form
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d

dt
[ξL+ (ηi − ξẋi)Lẋi

] = 0

The expression within the square brackets is a constant of the motion.

Apply this theorem to a Lagrangian that is invariant under space dis-

placements, time displacements, and rotations around a space axis to

construct the following conserved quantities:
Symmetry Conserved Quantity

Space Displacements Momentum

Time Displacements Energy

Space-Time Displacements Four-Momentum

Rotations Angular Momentum

11. Noether’s Theorem, More General: We present a more gen-

eral form of Noether’s theorem than is presented above. This form is

very powerful and sufficient for most physical applications. It is not the

most general form of Noether’s theorem. Suppose the dynamics of a sys-

tem is derivable from an action integral of the form L[u] =
∫

L(x, u)dx,

x ∈ Rp, u ∈ Rq, and suppose the infinitesimal generators that leave the

dynamics invariant has the from

v =

p
∑

i=1

ξi(x, u)
∂

∂xi
+

q
∑

α=1

φα(x, u)
∂

∂uα

Show that the components Pi defined by

P i = ξiL+

q
∑

α=1

φα(x, u)
∂L
∂uα

i

−
q

∑

α=1

p
∑

j=1

ξjuα
j

∂L
∂uα

i

satisfy a conservation law of the form

∇P = div P =
∂P i

∂xi
= 0

12. Representation Theory: G is a compact Lie group with in-

variant measure dρ(g) and volume V ol(G) =
∫

dρ(g), Γλ
µν(g) are the ir-

reducible representations of G constructed by reduction of tensor prod-

ucts (Wigner-Stone theorem), and φ(g), ψ(g) are functions defined on

the group manifold. The orthogonality and completeness relations are

∫

dim λ

V ol(G)
Γλ′∗

µ′ν′(g)Γλ
µν(g)dρ(g) = δλ′λδµ′µδν′ν
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∑

λ

∑

µ

∑

ν

dim λ

V ol(G)
Γλ∗

µν(g′)Γλ
µν(g) = δ(g′, g)

Introduce Dirac notation for these matrix elements:

〈g| λ
µν
〉 =

√

dim λ

V ol(G)
Γλ

µν(g) 〈 λ

µν
|g〉 =

√

dim λ

V ol(G)
Γλ∗

µν(g)

a. Write the orthogonality and completeness relations in Dirac nota-

tion and show:

∫

dρ(g)〈 λ′

µ′ν′
|g〉〈g| λ

µν
〉 = 〈 λ′

µ′ν′
| λ
µν
〉

∑

λ

∑

µ

∑

ν

〈g′| λ
µν
〉〈 λ

µν
|g〉 = 〈g′|g〉

b. Show that the orthogonality and completeness relations can be

expressed in the form of “resolutions of the identity” in appropriate

spaces:

|g〉〈g| =
∫

|g〉dρ(g)〈g| = I in group space

| λ

µν
〉〈 λ

µν
| =

∑

λ

∑

µ

∑

ν

| λ

µν
〉〈 λ

µν
| = I in representation space

c. Carry out a Fourier decomposition on the functions ψ(g) = 〈g|ψ〉

and 〈 λ

µν
|ψ〉 =

∫

dρ(g)〈 λ

µν
|g〉〈g|ψ〉 (and similarly for φ(g) = 〈g|φ〉)

using the Dirac representation. Write down the Parseval equality for the

inner product
∫

φ∗(g)ψ(g)dρ(g) expressed in terms of the discrete and

continuous basis vectors in this Hilbert space.


