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Introduction

Contents

1.1 The Program of Lie 1
1.2 A Result of Galois 3
1.3 Group Theory Background 4
1.4 Approach to Solving Polynomial

Equations 9
1.5 Solution of the Quadratic Equation 10
1.6 Solution of the Cubic Equation 12
1.7 Solution of the Quartic Equation 15
1.8 The Quintic Cannot be Solved 18
1.9 Example 19
1.10 Conclusion 22
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Lie groups were initially introduced as a tool to solve or simplify ordinary
and partial differential equations. The model for this application was
Galois’ use of finite groups to solve algebraic equations of degree two,
three, and four, and to show that the general polynomial equation of
degree greater than four could not be solved by radicals. In this chapter
we show how the structure of the finite group that leaves a quadratic,
cubic, or quartic equation invariant can be used to develop an algorithm
to solve that equation.

1.1 The Program of Lie

Marius Sophus Lie (1842 - 1899) embarked on a program that is still not

complete, even after a century of active work. This program attempts

to use the power of the tool called group theory to solve, or at least

simplify, ordinary differential equations.

Earlier in that century, Évariste Galois (1811 - 1832) had used group

theory to solve algebraic (polynomial) equations that were quadratic,

cubic, and quartic. In fact, he did more. He was able to prove that

1



2 Introduction

no closed form solution could be constructed for the general quintic (or

any higher degree) equation using only the four standard operations of

arithmetic (+,−,×,÷) as well as extraction of the nth roots of a complex

number.

Lie initiated his program on the basis of analogy. If finite groups

were required to decide on the solvability of finite-degree polynomial

equations, then ‘infinite groups’ (i.e., groups depending continuously on

one or more real or complex variables) would probably be involved in

the treatment of ordinary and partial differential equations. Further, Lie

knew that the structure of the polynomial’s invariance (Galois) group

not only determined whether the equation was solvable in closed form,

but also provided the algorithm for constructing the solution in the case

that the equation was solvable. He therefore felt that the structure

of an ordinary differential equation’s invariance group would determine

whether or not the equation could be solved or simplified and, if so, the

group’s structure would also provide the algorithm for constructing the

solution or simplification.

Lie therefore set about the program of computing the invariance group

of ordinary differential equations. He also began studying the structure

of the children he begat, which we now call Lie groups.

Lie groups come in two basic varieties: the simple and the solvable.

Simple groups have the property that they regenerate themselves under

commutation. Solvable groups do not, and contain a chain of subgroups,

each of which is an invariant subgroup of its predecessor.

Simple and solvable groups are the building blocks for all other Lie

groups. Semisimple Lie groups are direct products of simple Lie groups.

Nonsemisimple Lie groups are semidirect products of (semi)simple Lie

groups with invariant subgroups that are solvable.

Not surprisingly, solvable Lie groups are related to the integrability, or

at least simplification, of ordinary differential equations. However, sim-

ple Lie groups are more rigidly constrained, and form such a beautiful

subject of study in their own right that much of the effort of mathe-

maticians during the last century involved the classification and com-

plete enumeration of all simple Lie groups and the discussion of their

properties. Even today, there is no complete classification of solvable

Lie groups, and therefore nonsemisimple Lie groups.

Both simple and solvable Lie groups play an important role in the

study of differential equations. As in Galois’ case of polynomial equa-

tions, differential equations can be solved or simplified by quadrature if

their invariance group is solvable. On the other hand, most of the classi-
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cal functions of mathematical physics are matrix elements of simple Lie

groups in particular matrix representations. There is a very rich con-

nection between Lie groups and special functions that is still evolving.

1.2 A Result of Galois

In 1830 Galois developed machinery that allowed mathematicians to

definitively resolve questions that had eluded answers for 2000 years or

longer. These questions included the three famous challenges to ancient

Greek geometers: Whether by ruler and compasses alone it was possible

to

• square a circle

• trisect an angle

• double a cube.

His work helped to resolve longstanding questions of an algebraic nature:

Whether it was possible, using only the operations of arithmetic together

with the operation of constructing radicals, to solve

• cubic equations

• quartic equations

• quintic equations.

This branch of mathematics, now called Galois theory, continues to pro-

vide powerful new results, such as supplying answers and solution meth-

ods to the following questions:

• Can an algebraic expression be integrated in closed form?

• Under what conditions can errors in a binary code be corrected?

This beautiful machine, applied to a problem, provides important re-

sults. First, it can determine whether a solution is possible or not under

the conditions specified. Second, if a solution is possible, it suggests the

structure of the algorithm that can be used to construct the solution in

a finite number of well-defined steps.

Galois’ approach to the study of algebraic (polynomial) equations in-

volved two areas of mathematics, now called field theory and group

theory. One useful statement of Galois’ result is [50, 66]:

Theorem: A polynomial equation over the complex field is solvable

by radicals if and only if its Galois group G contains a chain of subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gω = I with the properties:
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1. Gi+1 is an invariant subgroup of Gi;

2. Each factor group Gi/Gi+1 is commutative.

In the statement of this theorem the field theory niceties are contained

in the term ‘solvable by radicals.’ This means that in addition to the four

standard arithmetic operations +,−,×,÷ one is allowed the operation

of taking nth roots of complex numbers.

The principal result of this theorem is stated in terms of the structure

of the group that permutes the roots of the polynomial equation among

themselves. Determining the structure of this group is a finite, and in

fact very simple, process.

1.3 Group Theory Background

A group G is defined as follows: It consists of a set of operations

G = {g1, g2, . . . }, called group operations, together with a combina-

torial operation, ·, called group multiplication, such that the following

four axioms are satisfied:

(i) Closure: If gi ∈ G, gj ∈ G, then gi · gj ∈ G.

(ii) Associativity: for all gi ∈ G, gj ∈ G, gk ∈ G,

(gi · gj) · gk = gi · (gj · gk)

(iii) Identity: There is a group operation, I (identity operator), with

the property that

gi · I = gi = I · gi

(iv) Inverse: Every group operation gi has an inverse (called g−1
i ):

gi · g−1
i = I = g−1

i · gi

The Galois group G of a general polynomial equation

(z − z1)(z − z2) · · · (z − zn) = 0

zn − I1z
n−1 + I2z

n−2 + · · · + (−1)nIn = 0 (1.1)

is the group that permutes the roots z1, z2, · · · , zn among themselves

and leaves the equation invariant:










z1

z2

...

zn











−→











zi1

zi2
...

zin











(1.2)
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This group, called the permutation group Pn or the symmetric group

Sn, has n! group operations. Each group operation is some permutation

of the roots of the polynomial; the group multiplication is composition

of successive permutations.

The permutation group Sn has a particularly convenient represen-

tation in terms of n × n matrices. These matrices have one nonzero

element, +1, in each row and each column. For example, the 6=3! 3×3

matrices for the permutation representation of S3 are

I →





1 0 0

0 1 0

0 0 1



 (123) →





0 1 0

0 0 1

1 0 0



 (321) →





0 0 1

1 0 0

0 1 0





(12) →





0 1 0

1 0 0

0 0 1



 (23) →





1 0 0

0 0 1

0 1 0



 (13) →





0 0 1

0 1 0

1 0 0





(1.3)

The symbol (123) means that the first root, z1, is replaced by z2, z2 is

replaced by z3, and z3 is replaced by z1





z1

z2

z3





(123)−→





z2

z3

z1



 (1.4)

The permutation matrix associated with this group operation carries out

the same permutation




z2

z3

z1



 =





0 1 0

0 0 1

1 0 0









z1

z2

z3



 (1.5)

More generally, a matrix representation of a group is a mapping of each

group operation into an n×n matrix that preserves the group multipli-

cation operation

gi · gj = gi · gj

↓ ↓ ↓ ↓
Γ(gi) × Γ(gj) = Γ(gi · gj)

(1.6)

Here · represents the multiplication operation in the group (i.e., com-

position of substitutions in Sn) and × represents the multiplication op-

eration among the matrices (i.e., matrix multiplication). The condition

(1.6) that defines a matrix representation of a group, G → Γ(G), is that

the product of matrices representing two group operations [Γ(gi)×Γ(gj)]
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is equal to the matrix representing the product of these operations in

the group [Γ(gi · gj)] for all group operations gi, gj ∈ G.

This permutation representation of S3 is 1:1, or a faithful representa-

tion of S3, since knowledge of the 3 × 3 matrix uniquely identifies the

original group operation in S3.

A subgroup H of the group G is a subset of group operations in G that

is closed under the group multiplication in G.

Example: The subset of operations I, (123), (321) forms a subgroup

of S3. This particular subgroup is denoted A3 (alternating group). It

consists of those operations in S3 whose determinants, in the permuta-

tion representation, are +1. The group S3 has three two-element sub-

groups:

S2(12) = {I, (12)}
S2(23) = {I, (23)}
S2(13) = {I, (13)}

as well as the subgroup consisting of the identity alone. The alternating

subgroup A3 ⊂ S3 and the three two-element subgroups S2(ij) of S3 are

illustrated in Fig. 1.1. The set of operations I, (123), (12) does not

constitute a subgroup because products of operations in this subset do

not lie in this subset: (123) · (123) = (321), (123) · (12) = (23), etc. In

fact, the two operations (123), (12) generate S3 by taking products of

various lengths in various order.

S3

A3 S2(12) S2(13) S2(23)

I

Fig. 1.1. Subgroups of S3

A group G is commutative, or abelian, if

gi · gj = gj · gi (1.7)
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for all group operations gi, gj ∈ G.

Example: S3 is not commutative, while A3 is. For S3 we have

(12)(23) = (321)

(123) 6= (321)

(23)(12) = (123)

(1.8)

Two subgroups of G, H1 ⊂ G and H2 ⊂ G are conjugate if there is a

group element g ∈ G with the property

gH1g
−1 = H2 (1.9)

Example: The subgroups S2(12) and S2(13) are conjugate in S3 since

(23)S2(12)(23)−1 = (23) {I, (12)} (23)−1 = {I, (13)} = S2(13) (1.10)

On the other hand, the alternating group A3 ⊂ S3 is self-conjugate, since

any operation in G = S3 serves merely to permute the group operations

in A3 among themselves:

(23)A3(23)−1 = (23) {I, (123), (321)} (23)−1 = {I, (321), (123)} = A3

(1.11)

A subgroup H ⊂ G which is self-conjugate under all operations in G

is called an invariant subgroup of G, or normal subgroup of G.

In constructing group-subgroup diagrams, it is customary to show

only one of the mutually conjugate subgroups. This simplifies Fig. 1.1

to Fig. 1.2.

S3

A3 S2

I

Fig. 1.2. Subgroups of S3, combining conjugate subgroups

A mapping f from a group G with group operations g1, g2, . . . and

group multiplication · to a group H with group operations h1, h2, . . .
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and group multiplication × is called a homomorphism if it preserves

group multiplication:

gi · gj = gi · gj

↓ ↓ ↓ ↓
f(gi) × f(gj) = f(gi · gj)

(1.12)

The group H is called a homomorphic image of G. Several different

group elements in G may map to a single group element in H . Every

element hi ∈ H has the same number of inverse images gj ∈ G. If each

group element h ∈ H has a unique inverse image g ∈ G (h1 = f(g1) and

h2 = f(g2), h1 = h2 ⇒ g1 = g2) the mapping f is an isomorphism.

Example: The 3:1 mapping f of S3 onto S2 given by

S3
f−→ S2

I, (123), (321) −→ I

(12), (23), (31) −→ (12)

(1.13)

is a homomorphism.

Example: The 1:1 mapping of S3 onto the six 3 × 3 matrices given

in (1.3) is an isomorphism.

Remark: Homomorphisms of groups to matrix groups, such as that

in (1.3), are called matrix representations. The representation in (1.3)

is 1:1 or faithful, since the mapping is an isomorphism.

Remark: Isomorphic groups are indistinguishable at the algebraic

level. Thus, when an isomorphism exists between a group and a matrix

group, it is often preferable to study the matrix representation of the

group since the properties of matrices are so well known and familiar.

This is the approach we pursue in Chapter 3 when discussing Lie groups.

If H is a subgroup of G, it is possible to write every group element in

G as a product of an element h in the subgroup H with a group element

in a ‘quotient,’ or coset (denoted G/H). A coset is a subset of G. If the

order of G is |G| (S3 has 3! = 6 group elements, so the order of S3 is 6),

then the order of G/H is |G/H | = |G|/|H |. For example, for subgroups

H = A3 = {I, (123), (321)} and H = S2(23) = {I, (23)} we have

G/H · H = G

{I, (12)} · {I, (123), (321)} = {I, (123), (321), (12), (13), (23)}
{I, (12), (321)} · {I, (23)} = {I, (23), (12), (123), (321), (13)}

(1.14)

The choice of the |G|/|H | group elements in the quotient space is not

unique. For the subgroup A3 we could equally well have chosen G/H =
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S3/A3 = {I, (13)} or {I, (23)}; for S2(23) we could equally well have

chosen G/H = S3/S2(23) = {I, (123), (321)}.
In general, it is not possible to choose the group elements in G/H so

that they form a subgroup of G. However, if H is an invariant subgroup

of G, it is always possible to choose the group elements in the quotient

space G/H in such a way that they form a subgroup in G. This group

is called the factor group, also denoted G/H . Since A3 is an invariant

subgroup of S3, the coset S3/A3 is a group, and this group is isomorphic

to S2. More generally, if H is an invariant subgroup of G, then the group

G is the direct product of the invariant subgroup H with the factor group

G/H : G = G/H × H .

1.4 Approach to Solving Polynomial Equations

The general nth degree polynomial equation over the complex field can

be expressed in terms of the kth order symmetric functions Ik of the

roots zi as follows:

(z − z1)(z − z2) · · · (z − zn) = zn − I1z
n−1 + I2z

n−2 − · · · + (−)nIn = 0

I1 =

n
∑

i=1

zi = z1 + z2 + · · · + zn

I2 =

n
∑

i<j

zizj = z1z2 + z1z3 + · · · + z1zn + z2z3 + · · · + zn−1zn

...
...

... (1.15)

In =
n

∑

i<j<···<k

zizj . . . zk = z1z2 . . . zn

The n functions Ik (k = 1, 2, . . . , n) of the n roots (z1, z2, . . . , zn) are

symmetric: this means that they are invariant under the Galois group Sn

of this equation. Further, any function f(z1, z2, . . . , zn) that is invariant

under Sn can be written as a function of the invariants I1, I2, . . . , In.

The invariants are easily expressed in terms of the roots [cf., Eq(1.15)

above]. The inverse step, that of expressing the roots in terms of the

invariants, or coefficients of the polynomial equation, is the problem of

solving the polynomial equation.

Galois’ theorem states that a polynomial equation over the complex

field can be solved if and only if its Galois group G contains a chain of
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subgroups [50, 66]

G = G0 ⊃ G1 ⊃ · · · ⊃ Gω = I (1.16)

with the properties

(i) Gi+1 is an invariant subgroup of Gi

(ii) Gi/Gi+1 is commutative

The procedure for solving polynomial equations is constructive. First,

the last group-subgroup pair in this chain is isolated: Gω−1 ⊃ Gω = I.

The character table for the commutative group Gω−1/Gω = Gω−1 is con-

structed. This lists the |Gω−1|/|Gω| inequivalent one-dimensional rep-

resentations of Gω−1. Linear combinations of the roots zi are identified

that transform under (i.e., are basis functions for) the one-dimensional

irreducible representations of Gω−1. These functions are

(i) symmetric under Gω = I

(ii) not all symmetric under Gω−1.

Next, the next pair of groups Gω−2 ⊃ Gω−1 is isolated. Starting

from the set of functions in the previous step, one constructs from them

functions that are

(i) symmetric under Gω−1

(ii) not all symmetric under Gω−2.

This bootstrap procedure continues until the last group-subgroup pair

G = G0 ⊃ G1 is treated. At this stage the last set of functions can

be solved by radicals. These solutions are then fed down the group-

subgroup chain until the last pair Gω−1 ⊃ Gω = I is reached. When

this occurs, we obtain a linear relation between the roots z1, z2, . . . , zn

and functions of the invariants I1, I2, . . . , In.

This brief description will now be illustrated by using Galois theory

to solve quadratic, cubic, and quartic equations by radicals.

1.5 Solution of the Quadratic Equation

The general quadratic equation has the form

(z − r1)(z − r2) = z2 − I1z + I2 = 0

I1 = r1 + r2 (1.17)

I2 = r1r2
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The Galois group is S2 with subgroup chain shown in Fig. 1.3.

S2 = {I, (12)}

I

Fig. 1.3. Group chain for the Galois group S2 of the general quadratic equa-
tion.

The character table for the commutative group S2 is

I (12) Basis Functions

Γ1 1 1 u1 = r1 + r2

Γ2 1 −1 u2 = r1 − r2

(1.18)

Linear combinations of the roots that transform under the one-dimensional

irreducible representations Γ1, Γ2 are
[

u1

u2

]

=

[

1 1

1 −1

] [

r1

r2

]

=

[

r1 + r2

r1 − r2

]

(1.19)

That is, the function r1 − r2 is mapped into itself by the identity, and

into its negative by (12)

I−→ +(r1 − r2)

(r1 − r2) (1.20)

(12)−→ (r2 − r1) = −(r1 − r2)

As a result, (r1 − r2) is not symmetric under the action of the group S2.

It transforms under the irreducible representation Γ2, not the identity

representation Γ1.

Since the square (r1−r2)
2 is symmetric (transforms under the identity

representation of S2), it can be expressed in terms of the two invariants

I1, I2 as follows

(r1 − r2)
2 = r2

1 − 2r1r2 + r2
2

= r2
1 + 2r1r2 + r2

2 − 4r1r2 = I2
1 − 4I2 = D

(1.21)

where D is the discriminant of the quadratic equation. Since (r1−r2) =
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±
√

D, we have the following linear relation between roots and symmetric

functions:
[

1 1

1 −1

] [

r1

r2

]

=

[

I1

±[I2
1 − 4I2]

1/2

]

(1.22)

Inversion of a square matrix involves a sequence of linear operations.

We find
[

r1

r2

]

=
1

2

[

1 1

1 −1

] [

I1

±
√

D

]

(1.23)

The roots are

r1, r2 =
1

2
(I1 ±

√
D) (1.24)

We solve the quadratic equation by another procedure, which we use

in the following two sections to simplify the cubic and quartic equa-

tions. This method is to move the origin to the mean value of the roots

by defining a new variable, x, in terms of z [c.f., Equ. (1.15)] by a

Tschirnhaus transformation

z = x +
1

2
I1 (1.25)

The quadratic equation for the new coordinate is

x2 − I ′1x + I ′2 = x2 + I ′2 = 0

I ′1 = 0 (1.26)

I ′2 = I2 −
(

1

2
I1

)2

The solutions for this auxiliary equation are constructed by radicals

x = ±
√

−I ′2 (1.27)

from which we easily construct the roots of the original equation

r1,2 =
1

2

(

I1 ±
√

I2
1 − 4I2

)

(1.28)

1.6 Solution of the Cubic Equation

The general cubic equation has the form

(z − s1)(z − s2)(z − s3) = z3 − I1z
2 + I2z − I3 = 0
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I1 = s1 + s2 + s3

I2 = s1s2 + s1s3 + s2s3 (1.29)

I3 = s1s2s3

The Galois group is S3 with subgroup chain shown in Fig. 1.4.

S3

A3 S2

I

Fig. 1.4. Group chain for the Galois group S3 of the general cubic equation.

Since A3 is an invariant subgroup of S3 and I is an invariant subgroup

of A3, the first of the two conditions of the Galois theorem (there exists

a chain of invariant subgroups) is satisfied. Since S3/A3 = S2 is com-

mutative and A3/I = A3 is commutative, the second condition is also

satisfied. This means that the general cubic equation can be solved.

We begin the solution with the last group-subgroup pair in this chain:

A3 ⊃ I. The character table for the commutative group A3 is

I (123) (321) Basis Functions

Γ1 1 1 1 v1 = s1 + s2 + s3

Γ2 1 ω ω2 v2 = s1 + ωs2 + ω2s3

Γ3 1 ω2 ω v3 = s1 + ω2s2 + ωs3

(1.30)

where

ω3 = +1, ω = e2πi/3 =
−1 + i

√
3

2
(1.31)

Linear combinations of the roots that transform under each of the three

one-dimensional irreducible representations are easily constructed




v1

v2

v3



 =





1 1 1

1 ω ω2

1 ω2 ω









s1

s2

s3



 =





s1 + s2 + s3

s1 + ωs2 + ω2s3

s1 + ω2s2 + ωs3



 (1.32)
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For example, the action of (123)−1 on v2 is

(123)−1v2 = (321)v2 = (321)(s1 + ωs2 + ω2s3) =

s3 + ωs1 + ω2s2 = ω(s1 + ωs2 + ω2s3) = ωv2
(1.33)

Since v1 is symmetric under both A3 and S3, it can be expressed in

terms of the invariants Ik:

v1 = I1 (1.34)

The remaining functions, v2 and v3, are symmetric under I but not

under A3.

We now proceed to the next group-subgroup pair: S3 ⊃ A3. To

construct functions symmetric under A3 but not under S3 we observe

that the cubes of v2 and v3 are symmetric under A3 but not under S3:

(12)(v2)
3 = (12)(s1+ωs2+ω2s3)

3 = (s2+ωs1+ω2s3)
3 = ω3(s1+ω2s2+ωs3)

3 = (v3)
3

(1.35)

(12)(v3)
3 = (12)(s1+ω2s2+ωs3)

3 = (s2+ω2s1+ωs3)
3 = ω6(s1+ωs2+ω2s3)

3 = (v2)
3

Since S2 = S3/A3 permutes the functions v3
2 and v3

3 , it is the Galois

group of the resolvent quadratic equation whose two roots are v3
2 and

v3
3 . This equation has the form

(x − v3
2)(x − v3

3) = x2 − J1x + J2 = 0

J1 = v3
2 + v3

3 (1.36)

J2 = v3
2v3

3

Since J1, J2 are symmetric under S3, they can be expressed in terms of

the invariants I1, I2, I3 of the original cubic. Since J1 has order 3 and J2

has order 6, we can write the invariants of the quadratic equation (1.36)

in terms of the invariants I1, I2, I3 (of orders 1, 2, 3) of the original cubic

equation (1.29) as follows:

J1 =
∑

i+2j+3k=3

AijkIi
1I

j
2Ik

3

J2 =
∑

i+2j+3k=6

BijkIi
1I

j
2Ik

3 (1.37)

These relations can be computed, but they simplify considerably if I1 =

s1 + s2 + s3 = 0. This can be accomplished by shifting the origin using

a Tschirnhaus transformation as before, with

z = y +
1

3
I1 (1.38)
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The auxiliary cubic equation has the structure

y3 − 0y2 + I ′2y − I ′3 = 0

I ′1 = s′1 + s′2 + s′3 = 0

I ′2 = s′1s
′

2 + s′1s
′

3 + s′2s
′

3 = I2 − (1/3)I2
1

I ′3 = s′1s
′

2s
′

3 = I3 − (1/3)I2I1 + (2/27)I3
1

(1.39)

The invariants J1 = v3
2 + v3

3 and J2 = v3
2v3

3 can be expressed in terms

of I ′2, I
′

3 as follows

J1 = v3
2 + v3

3 = −27I ′3
J2 = v3

2v3
3 = −27I ′32

(1.40)

The resolvent quadratic equation whose solution provides v3
2 , v

3
3 is

x2 − (−27I ′3)x + (−27I ′32 ) = 0 (1.41)

The two solutions to this resolvent quadratic equation are

v3
2 , v3

3 = −27

2
I ′3 ±

1

2

[

(27I ′3)
2 + 4 ∗ 27I ′32

]1/2
(1.42)

The roots v2 and v3 are obtained by taking cube roots of v3
2 and v3

3 .

v2

v3
=

{

−27

2
I ′3 ±

1

2

[

(27I ′3)
2 + 4 ∗ 27I ′32

]1/2
}1/3

Finally, the roots s1, s2, s3 are linearly related to v1, v2, v3 by




1 1 1

1 ω ω2

1 ω2 ω









s1

s2

s3



 =





v1

v2

v3



 (1.43)

Again, determination of the roots is accomplished by solving a set of

simultaneous linear equations




s1

s2

s3



 =
1

3





1 1 1

1 ω2 ω

1 ω ω2









I1

v2

v3



 =
1

3





v1 + v2 + v3

v1 + ω2v2 + ωv3

v1 + ωv2 + ω2v3



 (1.44)

1.7 Solution of the Quartic Equation

The general quartic equation has the form

(z − t1)(z − t2)(z − t3)(z − t4) = z4 − I1z
3 + I2z

2 − I3z + I4 = 0
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I1 = t1 + t2 + t3 + t4
I2 = t1t2 + t1t3 + t1t4 + t2t3 + t2t4 + t3t4
I3 = t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4
I4 = t1t2t3t4

(1.45)

For later convenience we will construct the auxiliary quartic by shifting

the origin of coordinates through the Tschirnhaus transformation z =

z′ + 1
4I1

(z′ − t1)(z
′ − t2)(z

′ − t3)(z
′ − t4) = z′4 − I ′1z

′3 + I ′2z
′2 − I ′3z

′ + I ′4 = 0

I ′1 = 0

I ′2 = I2 − 3
8I2

1

I ′3 = I3 − 1
2I2I1 + 1

8I3
3

I ′4 = I4 − 1
4I3I1 + 1

16I2I
2
1 − 3

44 I4
1

(1.46)

S4

V8 A4 S3

V4 A3 S2

I

Fig. 1.5. Group chain for the Galois group S4 of the general quartic equation.

The Galois group is S4. This has the subgroup chain shown in Fig.

1.5. The alternating group A4 consists of the twelve group opera-

tions that have determinant +1 in the permutation matrix represen-

tation. The fourgroup (vierergruppe, Klein group, Klein four-group) V4

is {I, (12)(34), (13)(24), (14), (23)}. The chain

S4 ⊃ A4 ⊃ V4 ⊃ I

satisfies both conditions of Galois’ theorem. In particular

(i) A4 is invariant in S4 and S4/A4 = S2

(ii) V4 is invariant in A4 and A4/V4 = C3 = {I, (234), (432)}
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(iii) I is invariant in V4 and V4/I = V4 = {I, (12)(34), (13)(24), (14), (23)}.

We again begin at the end of the chain with the commutative group

V4 whose character table is

I (12)(34) (13)(24) (14)(23) Basis Functions

Γ1 1 1 1 1 w1 = t1 + t2 + t3 + t4
Γ2 1 1 −1 −1 w2 = t1 + t2 − t3 − t4
Γ3 1 −1 1 −1 w3 = t1 − t2 + t3 − t4
Γ4 1 −1 −1 1 w4 = t1 − t2 − t3 + t4

(1.47)

The linear combinations of these roots that transform under each of the

irreducible representations are









w1

w2

w3

w4









=









1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

















t1
t2
t3
t4









=









t1 + t2 + t3 + t4
t1 + t2 − t3 − t4
t1 − t2 + t3 − t4
t1 − t2 − t3 + t4









(1.48)

These basis vectors are symmetric under I but the basis vectors w2, w3, w4

are not symmetric under V4.

We now advance to the next group-subgroup pair: A4 ⊃ V4. It is

a simple matter to construct from these linear combinations functions

that are

(i) Symmetric under V4

(ii) Permuted among themselves by A4 and the group A4/V4.

These functions are w1 = I1 and w2
2, w

2
3 , w

2
4 . In the coordinate system

in which the sum of the roots is zero, the three functions w2
2 , w

2
3 , w

2
4 are

w2
2 = (t′1 + t′2 − t′3 − t′4)

2 = 22(t′1 + t′2)
2 = −4(t′1 + t′2)(t

′

3 + t′4)

w2
3 = (t′1 − t′2 + t′3 − t′4)

2 = 22(t′1 + t′3)
2 = −4(t′1 + t′3)(t

′

2 + t′4)

w2
4 = (t′1 − t′2 − t′3 + t′4)

2 = 22(t′1 + t′4)
2 = −4(t′1 + t′4)(t

′

2 + t′3)
(1.49)

It is clear that the three w2
j (j = 2, 3, 4) are permuted among themselves

by the factor group C3 = A4/V4, which is a subgroup of the Galois group

of a resolvent cubic equation whose three roots are w2
2 , w

2
3 , w

2
4 :

(y − w2
2)(y − w2

3)(y − w2
4) = y3 − J1y

2 + J2y − J3 = 0
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J1 = w2
2 + w2

3 + w2
4

J2 = w2
2w

2
3 + w2

2w
2
4 + w2

3w
2
4 (1.50)

J3 = w2
2w

2
3w

2
4

Since the three Jk are invariant under C3, they can be expressed in terms

of the symmetric functions (coefficients) of the original quartic equation

(1.45) or (1.46). We find by direct calculation

J1 = (−4)1(2I ′2)

J2 = (−4)2(I ′22 − 4I ′4) (1.51)

J3 = (−4)3(−I ′23 )

This cubic equation is solved by proceeding to the first group-subgroup

pair in the chain: S4 ⊃ A4, with S4/A4 = S2. The cubic is solved by

introducing the resolvent quadratic, as described in the previous section.

If the three solutions of the resolvent cubic equation are called y2, y3, y4,

then the functions w2, w3, w4 are

w2 = ±√
y2

w3 = ±√
y3 (1.52)

w4 = ±√
y4

A simple computation shows that w2w3w4 = 8I ′3. The signs ±√
yj are

chosen so that their product is 8I ′3. The simple linear relation between

the roots ti and the invariants I1 and functions wj(I
′) is easily inverted:









t1
t2
t3
t4









=
1

4









1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

















I1

w2

w3

w4









(1.53)

where the wj are square roots of the solutions of the resolvent cubic

equation whose coefficients are functions (1.51) of the auxiliary quartic

equation.

1.8 The Quintic Cannot be Solved

To investigate whether the typical quintic equation is solvable (and if

so, how), it is sufficient to study the structure of its Galois group S5.

The alternating subgroup A5 of order 60 is an invariant subgroup. S5

has no invariant subgroups except A5 and I. Further, A5 has only I as
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an invariant subgroup. The only chain of invariant subgroups in S5 is

S5 ⊃ A5 ⊃ I (1.54)

Although S5/A5 = S2 is commutative, A5/I = A5 is not. Therefore the

quintic equation does not satisfy the conditions of Galois’ theorem, so

cannot be solved by radicals. General polynomial equations of degree

greater than 5 also cannot be solved by radicals.

1.9 Example

To illustrate the solution of a polynomial equation by radicals using the

machinery introduced above, we begin with a quartic equation whose

roots are: −2,−1, 2, 5. We will carry out the algorithm on the corre-

sponding quartic equation. As we proceed through the algorithm, we

indicate the numerical values of the functions present. Those values that

would not be available at each stage of the computation are indicated

by arrows.

The fourth degree equation is

(z + 2)(z + 1)(z − 2)(z − 5) = z4 − 4z3 − 9z2 + 16z + 20 = 0

I1 = 4

I2 = −9

I3 = −16

I4 = 20

(1.55)

We now center the roots by making a Tschirnhaus transformation

z = z′ +
1

4
I1 = z′ + 1

The new roots are −3,−2, 1, 4 and the auxiliary quartic equation is

(z′ + 1)4 − 4(z′ + 1)3 − 9(z′ + 1)2 + 16(z′ + 1) + 20 =

(z′ + 3)(z′ + 2)(z′ − 1)(z′ + 4) = z′4 − 15z′2 − 10z′ + 24 = 0

I ′1 = 0

I ′2 = −15

I ′3 = 10

I ′4 = 24

(1.56)
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Next, we introduce linear combinations of the four roots t′1 = −3, t′2 =

−2, t′3 = 1, t′4 = 4









w1

w2

w3

w4









=









1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

















t′1
t′2
t′3
t′4









→









0

−10

−4

2









(1.57)

Observe at this stage that w2w3w4 = 8I ′3.

Now we compute the squares of these numbers

w2
2 = y2 → (−10)2 = 100

w2
3 = y3 → (−4)2 = 16

w2
4 = y4 → (+2)2 = 4

(1.58)

From the auxiliary quartic (1.56) the resolvent cubic equation can be

constructed

y3 − J1y
2 + J2y − J3 = 0

J1 = (−4)1[2I ′2] = (−4)(−30) = 120

J2 = (−4)2[I ′22 − 4I ′4] = 16(225 − 4 ∗ 24) = 2064

J3 = (−4)3[−I ′23 ] = (−64)(−100) = 6400

(1.59)

Note that these are the coefficients of the equation

(y − 22)(y − 42)(y − 102) = y3 − 120y2 + 2064y − 6400 = 0 (1.60)

Now we construct the cubic equation auxiliary to this cubic. This is

done by defining y = y′ + 1
3J1 = y′ + 1

3 (4 + 16 + 100) = y′ + 40. The

roots are now

y′

1 = y1 − 40 → 4 − 40 = −36

y′

2 = y2 − 40 → 16 − 40 = −24

y′

3 = y3 − 40 → 100 − 40 = 60

(1.61)

The auxiliary cubic is

y′3 − J ′

1y
′2 + J ′

2y
′ − J ′

3 = 0

J ′

1 = 0

J ′

2 = −2736

J ′

3 = 51840

(1.62)

We note that these are the coefficients of the equation

(y′ + 36)(y′ + 24)(y′ − 60) = 0 (1.63)



1.9 Example 21

These coefficients are obtained directly from the coefficients of the re-

solvent cubic, in principle without knowledge of the values of the roots.

Next we construct the functions v1, v2, v3





v1

v2

v3



 =





1 1 1

1 ω ω2

1 ω2 ω









s1

s2

s3





s1 = −24

s2 = −36

s3 = 60

−→





0

−36 − i48
√

3

−36 + i48
√

3





(1.64)

We can express v3
2 + v3

3 , v3
2v

3
3 in terms of J ′

2, J
′

3:

v3
2 + v3

3 = 27J ′

3 = 27 ∗ 518400 = 1399680

v3
2v

3
3 = −27J ′3

2 = −27 ∗ (−2736)3 = 552983334912
(1.65)

The quadratic resolvent for the auxiliary cubic is

x2 − 1399680x + 552983334912 = 0

K1 = 1399680

K2 = 552983334912
(1.66)

A Tschirnhaus transformation x = x′ + 1
2K1 produces the auxiliary

quadratic

x′2 + 63207309312 = 0

K ′

1 = 0

K2 = 63207309312
(1.67)

The square of the difference between the two roots of this equation is

easily determined:

x′

1 − x′

2 = x1 − x2 = ±2
√
−K2 = ±2i

√
K2

= ±2i ∗ 145152
√

3 = ±i ∗ 290304
√

3
(1.68)

Now we work backwards. The solutions of the resolvent quadratic are

given by the linear equation
[

x1

x2

]

=
1

2

[

1 1

1 −1

] [

K1 = 1399680

2
√
−K2 = i ∗ 290304

√
3

]

= 699840±i∗145152
√

3

(1.69)

These solutions are the values of v3
2 and v3

3 :

v3
2 = 699840 + i 145152

√
3

v3
3 = 699840 − i 145152

√
3

(1.70)
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Next, we take cube roots of these quantities. These are unique up to a

factor of ω

v2 = −36 + i48
√

3

v3 = −36 − i48
√

3
(1.71)

The values y1, y2, y3 of the resolvent cubic are complex linear combina-

tions of v2, v3





y1

y2

y3



 =
1

3





1 1 1

1 ω2 ω

1 ω ω2









J1 = 120

v2 = −36 + i 48
√

3

v3 = −36 − i 48
√

3



 =





16

100

4





(1.72)

w2
2 = y1 w2 = ±4

w2
3 = y2 w3 = ±10

w2
4 = y3 w4 = ±2

(1.73)

Since w2w3w4 = 8I ′3 = 80, an even number of these signs must be neg-

ative. The simplest choice is to take all signs positive. This is different

from the results shown in (1.57); this choice of signs serves only to per-

mute the order of the roots. In the final step, the roots of the original

quartic are linear combinations of w2, w3, w4 and the linear symmetric

function w1 = I1
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







(1.74)

We have recovered the four roots of the original quartic equation using

Galois’ algorithm, based on the structure of the invariance group S4 of

the quartic equation.

1.10 Conclusion

One of the many consequences of Galois’ study of algebraic equations

and the symmetries that leave them invariant is the proof that an al-

gebraic equation can be solved by radicals if and only if its invariance

group has a certain structure. This proof motivated Lie to search for

analogous results involving differential equations and their symmetry

groups, now called Lie groups. We have described in this chapter how

the structure of the discrete symmetry group (Galois group) of a polyno-

mial equation determines whether or not that equation can be solved by



1.11 Problems 23

radicals. If the answer is ‘yes,’ we have shown how the structure of the

Galois group determines the structure of the algorithm for constructing

solutions. This algorithm has been developed for the cubic and quartic

equations, and illustrated by example for a quartic equation.

1.11 Problems

1. Compute S4/A4, A4/V4, V4 and show that they are commutative.

2. Construct the group V8 with the property S4 ⊃ V8 ⊃ V4 (cf. Fig.

1.5). Hint: include a cyclic permutation.

3. For the cubic equation z3 − 7z + 6 = 0 [(z − 1)(z − 2)(z + 3) = 0]

show

I1 = 0 J1 = 162

I2 = −7 J2 = 9261

I3 = −6

Show that the resolvent equation for v3
2 , v3

3 is (x − v3
2)(x − v3

3) = x2 −
162x + 9261 = 0. Solve this quadratic to find v3

2 , v
3
3 = 81 ± i30

√
3, so

that v2, v3 = 1
2 (3 ± i5

√
3). Invert Equ. (1.43) to determine the three

roots of the original equation: (1, 2,−3).

4. Ruler and compass can be used to construct an orthogonal pair

of axes in the plane (Euclid). A compass is used to establish a unit

of length (1). Then by ruler and compass it is possible to construct

intervals of length x, where x is integer. From there it is possible to

construct intervals of lengths x + y, x− y, x ∗ y and x/y using ruler and

compass. It is also possible to construct intervals of length
√

x by these

means. The set of all numbers that can be constructed from integers by

addition, subtraction, multiplication, division, and extraction of square

roots is called the set of constructable numbers. This forms a subset of

the numbers x + iy = (x, y) in the complex plane. If a number is (is

not) constructable the point representing that number can (cannot) be

constructed by ruler and compass alone. Since repeated square roots

can be taken, a constructable number satisfies an algebraic equation of

degree K with integer coefficients, where K = 2n must be some power

of two.

The three geometry problems of antiquity are:
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a: Square a circle? For the circle of radius 1 the area is π. Squaring

a circle means finding an interval of length x, where x2 − π = 0. This is

of degree 2 but π is not rational (not even algebraic). Argue that it is

impossible to square the circle by ruler and compass alone.

b: Double the cube? A cube with edge length 1 has volume 13 =

1. A cube with twice the volume has edge length x, where x satisfies

x3 − 2 = 0. Although the coefficients are integers this equation is of

degree 3 6= 2n for any integer n. Argue that it is impossible to double

the volume of a cube by ruler and compass alone.

c: Trisect an angle? If 3θ is some angle, the trigonometric functions

of 3θ and 1
3 (3θ) = θ are related by

ei3θ = (eiθ)3

cos(3θ) + i sin(3θ) = (cos3(θ) − 3 cos(θ) sin2(θ)) + i(3 cos2(θ) sin(θ) − sin3(θ))

In particular

cos(3θ) = 4 cos3(θ) − 3 cos(θ)

Whether cos(3θ) is rational or irrational, the equation for cos(θ):

4 cos3(θ) − 3 cos(θ) − cos(3θ) = 0

is cubic. Argue that it is impossible to trisect an angle unless cos(3θ) is

such that the cubic factors into the form (x2 + ax+ b)(x+ c) = 0, where

a, b, c are rational. For example, if cos(3θ) = 0, c = 0 so that a = 0 and

b = −3/4. Then cos(θ) = 0 or ±
√

3/2 for 3θ = π/2 (+), 3π/2 (0), or

5π/2 (−).


